98 research outputs found

    Constrained Quantization on Symplectic Manifolds and Quantum Distribution Functions

    Get PDF
    A quantization scheme based on the extension of phase space with application of constrained quantization technic is considered. The obtained method is similar to the geometric quantization. For constrained systems the problem of scalar product on the reduced Hilbert space is investigated and possible solution of this problem is done. Generalization of the Gupta-Bleuler like conditions is done by the minimization of quadratic fluctuations of quantum constraints. The scheme for the construction of generalized coherent states is considered and relation with Berezin quantization is found. The quantum distribution functions are introduced and their physical interpretation is discussed.Comment: 42 page

    A Causal Algebra for Liouville Exponentials

    Full text link
    A causal Poisson bracket algebra for Liouville exponentials on a cylinder is derived using an exchange algebra for free fields describing the in and out asymptotics. The causal algebra involves an even number of space-time points with a minimum of four. A quantum realisation of the algebra is obtained which preserves causality and the local form of non-equal time brackets.Comment: 10 page

    Quantization of a relativistic particle on the SL(2,R) manifold based on Hamiltonian reduction

    Full text link
    A quantum theory is constructed for the system of a relativistic particle with mass m moving freely on the SL(2,R) group manifold. Applied to the cotangent bundle of SL(2,R), the method of Hamiltonian reduction allows us to split the reduced system into two coadjoint orbits of the group. We find that the Hilbert space consists of states given by the discrete series of the unitary irreducible representations of SL(2,R), and with a positive-definite, discrete spectrum.Comment: 12 pages, INS-Rep.-104

    Dynamical Ambiguities in Singular Gravitational Field

    Full text link
    We consider particle dynamics in singular gravitational field. In 2d spacetime the system splits into two independent gravitational systems without singularity. Dynamical integrals of each system define sl(2,R)sl(2,R) algebra, but the corresponding symmetry transformations are not defined globally. Quantization leads to ambiguity. By including singularity one can get the global SO(2.1)SO(2.1) symmetry. Quantization in this case leads to unique quantum theory.Comment: 7 pages, latex, no figures, submitted for publicatio

    On the S-matrix of Liouville theory

    Get PDF
    The S-matrix for each chiral sector of Liouville theory on a cylinder is computed from the loop expansion of correlation functions of a one-dimensional field theory on a circle with a non-local kinetic energy and an exponential potential. This action is the Legendre transform of the generating function of semiclassical scattering amplitudes. It is derived from the relation between asymptotic in- and out-fields. Its relevance for the quantum scattering process is demonstrated by comparing explicit loop diagrams computed from this action with other methods of computing the S-matrix, which are also developed

    Generating Functional for the S-Matrix in Liouville Theory

    Get PDF
    We recently proposed a functional integral representation for the generating functional of S-matrix elements of Liouville theory on a cylinder. The functional integral is defined in terms of a non-local one-dimensional action on a circle. We review and elaborate on this proposal and subject it to non-perturbative checks

    Causal Poisson Brackets of the SL(2,R) WZNW Model and its Coset Theories

    Get PDF
    From the basic chiral and anti-chiral Poisson bracket algebra of the SL(2,R) WZNW model, non-equal time Poisson brackets are derived. Through Hamiltonian reduction we deduce the corresponding brackets for its coset theories.Comment: 7 pages, LaTeX, no figure
    • …
    corecore