163 research outputs found

    Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix

    Get PDF
    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement

    Dietary potassium and the kidney:lifesaving physiology

    Get PDF
    Potassium often has a negative connotation in Nephrology as patients with chronic kidney disease (CKD) are prone to develop hyperkalaemia. Approaches to the management of chronic hyperkalaemia include a low potassium diet or potassium binders. Yet, emerging data indicate that dietary potassium may be beneficial for patients with CKD. Epidemiological studies have shown that a higher urinary potassium excretion (as proxy for higher dietary potassium intake) is associated with lower blood pressure (BP) and lower cardiovascular risk, as well as better kidney outcomes. Considering that the composition of our current diet is characterized by a high sodium and low potassium content, increasing dietary potassium may be equally important as reducing sodium. Recent studies have revealed that dietary potassium modulates the activity of the thiazide-sensitive sodium-chloride cotransporter in the distal convoluted tubule (DCT). The DCT acts as a potassium sensor to control the delivery of sodium to the collecting duct, the potassium-secreting portion of the kidney. Physiologically, this allows immediate kaliuresis after a potassium load, and conservation of potassium during potassium deficiency. Clinically, it provides a novel explanation for the inverse relationship between dietary potassium and BP. Moreover, increasing dietary potassium intake can exert BP-independent effects on the kidney by relieving the deleterious effects of a low potassium diet (inflammation, oxidative stress and fibrosis). The aim of this comprehensive review is to link physiology with clinical medicine by proposing that the same mechanisms that allow us to excrete an acute potassium load also protect us from hypertension, cardiovascular disease and CKD

    Sensitivity and specificity of detection methods for erythropoietin doping in cyclists

    Get PDF
    Recombinant human erythropoietin (rHuEPO) is used as doping a substance. Anti-doping efforts include urine and blood testing and monitoring the athlete biological passport (ABP). As data on the performance of these methods are incomplete, this study aimed to evaluate the performance of two common urine assays and the ABP. In a randomized, double-blinded, placebo-controlled trial, 48 trained cyclists received a mean dose of 6000 IU rHuEPO (epoetin beta) or placebo by weekly injection for eight weeks. Seven timed urine and blood samples were collected per subject. Urine samples were analyzed by sarcosyl-PAGE and isoelectric focusing methods in the accredited DoCoLab in Ghent. A selection of samples, including any with false presumptive findings, underwent a second sarcosyl-PAGE confirmation analysis. Hematological parameters were used to construct a module similar to the ABP and analyzed by two evaluators from an Athlete Passport Management Unit. Sensitivity of the sarcosyl-PAGE and isoelectric focusing assays for the detection of erythropoietin abuse were 63.8% and 58.6%, respectively, with a false presumptive finding rate of 4.3% and 6%. None of the false presumptive findings tested positive in the confirmation analysis. Sensitivity was highest between 2 and 6 days after dosing, and dropped rapidly outside this window. Sensitivity of the ABP was 91.3%. Specificity of the urine assays was high; however, the detection window of rHuEPO was narrow, leading to questionable sensitivity. The ABP, integrating longitudinal data, is more sensitive, but there are still subjects that evade detection. Combining these methods might improve performance, but will not resolve all observed shortcomings

    Urinary Potassium Excretion, Fibroblast Growth Factor 23, and Incident Hypertension in the General Population-Based PREVEND Cohort

    Get PDF
    High plasma fibroblast growth factor 23 (FGF23) and low potassium intake have each been associated with incident hypertension. We recently demonstrated that potassium supplementation reduces FGF23 levels in pre-hypertensive individuals. The aim of the current study was to address whether 24-h urinary potassium excretion, reflecting dietary potassium intake, is associated with FGF23, and whether FGF23 mediates the association between urinary potassium excretion and incident hypertension in the general population. At baseline, 4194 community-dwelling individuals without hypertension were included. Mean urinary potassium excretion was 76 (23) mmol/24 h in men, and 64 (20) mmol/24 h in women. Plasma C-terminal FGF23 was 64.5 (54.2–77.8) RU/mL in men, and 70.3 (56.5–89.5) RU/mL in women. Urinary potassium excretion was inversely associated with FGF23, independent of age, sex, urinary sodium excretion, bone and mineral parameters, inflammation, and iron status (St. β −0.02, p < 0.05). The lowest sex-specific urinary potassium excretion tertile (HR 1.18 (95% CI 1.01–1.37)), and the highest sex-specific tertile of FGF23 (HR 1.17 (95% CI 1.01–1.37)) were each associated with incident hypertension, compared with the reference tertile. FGF23 did not mediate the association between urinary potassium excretion and incident hypertension. Increasing potassium intake, and reducing plasma FGF23 could be independent targets to reduce the risk of hypertension in the general population

    Effect of sodium bicarbonate supplementation on the renin-angiotensin system in patients with chronic kidney disease and acidosis:a randomized clinical trial

    Get PDF
    Background Acidosis-induced kidney injury is mediated by the intrarenal renin-angiotensin system, for which urinary renin is a potential marker. Therefore, we hypothesized that sodium bicarbonate supplementation reduces urinary renin excretion in patients with chronic kidney disease (CKD) and metabolic acidosis. Methods Patients with CKD stage G4 and plasma bicarbonate 15-24 mmol/l were randomized to receive sodium bicarbonate (3 x 1000 mg/day, similar to 0.5 mEq/kg), sodium chloride (2 x 1,00 mg/day), or no treatment for 4 weeks (n = 15/arm). The effects on urinary renin excretion (primary outcome), other plasma and urine parameters of the renin-angiotensin system, endothelin-1, and proteinuria were analyzed. Results Forty-five patients were included (62 +/- 15 years, eGFR 21 +/- 5 ml/min/1.73m(2), plasma bicarbonate 21.7 +/- 3.3 mmol/l). Sodium bicarbonate supplementation increased plasma bicarbonate (20.8 to 23.8 mmol/l) and reduced urinary ammonium excretion (15 to 8 mmol/day, both P <0.05). Furthermore, a trend towards lower plasma aldosterone (291 to 204 ng/L, P = 0.07) and potassium (5.1 to 4.8 mmol/l, P = 0.06) was observed in patients receiving sodium bicarbonate. Sodium bicarbonate did not significantly change the urinary excretion of renin, angiotensinogen, aldosterone, endothelin-1, albumin, or alpha 1-microglobulin. Sodium chloride supplementation reduced plasma renin (166 to 122 ng/L), and increased the urinary excretions of angiotensinogen, albumin, and alpha 1-microglobulin (all P <0.05). Conclusions Despite correction of acidosis and reduction in urinary ammonium excretion, sodium bicarbonate supplementation did not improve urinary markers of the renin-angiotensin system, endothelin-1, or proteinuria. Possible explanations include bicarbonate dose, short treatment time, or the inability of urinary renin to reflect intrarenal renin-angiotensin system activity

    Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure

    Get PDF
    ObjectiveThe arteriovenous fistula (AVF) still suffers from a high number of failures caused by insufficient outward remodeling and intimal hyperplasia (IH) formation from which the exact mechanism is largely unknown. A suitable animal model is of vital importance in the unraveling of the underlying pathophysiology. However, current murine models of AVF failure do not incorporate the surgical configuration that is commonly used in humans. Because the hemodynamic profile is one of the key determinants that play a role in vascular remodeling in the AVF, it is preferable to use this same configuration in an animal model. Here we describe a novel murine model of AVF failure in which the configuration (end-to-side) is similar to what is most frequently performed in humans.MethodsAn AVF was created in 45 C57BL/6 mice by anastomosing the end of a branch of the external jugular vein to the side of the common carotid artery with interrupted sutures. The AVFs were harvested and analyzed histologically at days 7, 14, and 28. Identical veins of unoperated-on mice served as controls. Intravenous near-infrared fluorescent fluorophores were used to assess the patency of the fistula.ResultsThe patency rates at days 7, 14, and 28 days were 88%, 90%, and 50%, respectively. The mean circumference increased up to day 14, with a maximum 1.4-fold increase at day 7 compared with the control group (1.82 ± 0.7 vs 1.33 ± 0.3 mm; P = .443). Between days 14 and 28, the circumference remained constant (2.36 ± 0.2 vs 2.45 ± 0.2 mm; P = .996). At 7 days after surgery, the intimal area consisted mainly of an acellular layer that was structurally analogous to a focal adherent thrombus. Starting at 14 days after surgery, venous IH increased significantly compared with the unoperated-on group (14 days: 115,090 ± 22,594 μm2, 28 days: 234,619 ± 47,828 μm2, unoperated group: 2368 ± 1056 μm2; P = .001 and P < .001, respectively) and was mainly composed of cells positive for α-smooth muscle actin. We observed leukocytes in the adventitial side of the vein at all time points.ConclusionsOur novel murine AVF model, which incorporates a clinically relevant configuration of the anastomosis, displays similar features that are characteristic of failing human AVFs. Moreover, our findings suggest that coagulation and inflammation could both potentially play an important role in the formation of IH and subsequent AVF failure. Near-infrared fluoroscopy was a suitable alternative for conventional imaging techniques. This murine AVF-model is a valuable addition to the AVF animal model arsenal.Clinical RelevanceThe autologous arteriovenous fistula is considered the preferred choice for vascular access in hemodialysis. However, this type of vascular access suffers from a high failure rate, of which the exact pathophysiology is poorly understood. The use of a clinically relevant murine model provides us with a tool to unravel the pathophysiology and also to develop new therapeutic strategies that can improve the patency of the arteriovenous fistula in hemodialysis patients

    Early systemic microvascular damage in pigs with atherogenic diabetes mellitus coincides with renal angiopoietin dysbalance

    Get PDF
    Background: Diabetes mellitus (DM) is associated with a range of microvascular complications including diabetic nephropathy (DN). Microvascular abnormalities in the kidneys are common histopathologic findings in DN, which represent one manifestation of ongoing systemic microvascular damage. Recently, sidestream dark-field (SDF) imaging has emerged as a noninvasive tool that enables one to visualize the microcirculation. In this study, we investigated whether changes in the systemic microvasculature induced by DM and an atherogenic diet correlated spatiotemporally with renal damage. Methods: Atherosclerotic lesion development was triggered in streptozotocin-induced DM pigs (140 mg/kg body weight) by administering an atherogenic diet for approximately 11 months. Fifteen months following induction of DM, microvascular morphology was visualized in control pigs (n = 7), non-diabetic pigs fed an atherogenic diet (ATH, n = 5), and DM pigs fed an atherogenic diet (DM+ATH, n = 5) using SDF imaging of oral mucosal tissue. Subsequently, kidneys were harvested from anethesized pigs and the expression levels of well-established markers for microvascular integrity, such as Angiopoietin-1 (Angpt1) and Angiopoietin-2 (Angpt2) were determined immunohistochemically, while endothelial cell (EC) abundance was determined by immunostaining for von Willebrand factor (vWF). Results: Our study revealed an increase in the capillary tortuosity index in DM+ATH pigs (2.31±0.17) as compared to the control groups (Controls 0.89±0.08 and ATH 1.55±0.11; p<0.05). Kidney biopsies showed marked glomerular lesions consisting of mesangial expansion and podocyte lesions. Furthermore, we observed a disturbed Angpt2/ Angpt1balance in the cortex of the kidney, as evidenced by increased expression of Angpt2 in DM+ATH pigs as compared to Control pigs (p<0.05). Conclusion: In the setting of DM, atherogenesis leads to the augmentation of mucosal capillary tortuosity, indicative of systemic microvascular damage. Concomitantly, a dysbalance in renal angiopoietins was correlated with the development of diabetic nephropathy. As such, our studies strongly suggest that defects in the systemic microvasculature mirror the accumulation of microvascular damage in the kidney

    Correction to: Outcomes of parathyroidectomy versus calcimimetics for secondary hyperparathyroidism and kidney transplantation:a propensity-matched analysis

    Get PDF
    The original version of this article unfortunately contained a mistake on the fifth and eleventh author names, from Schelto Kruijf to Schelto Kruijff and from Tessa van Ginhoven to Tessa M. van Ginhoven. The corrected author names are shown below. Schelto Kruijff and Tessa M. van Ginhoven
    • …
    corecore