13 research outputs found

    Enterohemorrhagic Escherichia coli with particular attention to the German outbreak strain O104:H4

    Get PDF
    This review deals with the epidemiology and ecology of enterohemorrhagic Escherichia coli (EHEC), a subset of the verocytotoxigenic Escherichia coli (VTEC), and subsequently discusses its public health concern. Attention is also given to the outbreak strain O104:H4, which has been isolated as causative agent of the second largest outbreak of the hemolytic uremic syndrome worldwide, which started in Germany in May 2011. This outbreak strain is not an EHEC as such but possesses an unusual combination of EHEC and enteroaggregative E. coli (EAggEC) virulence properties

    Loss of vtx Genes after the First Subcultivation Step of Verocytotoxigenic Escherichia coli O157 and Non-O157 during Isolation from Naturally Contaminated Fecal Samples

    Get PDF
    Verocytotoxins VT1 and VT2,produced by Verocytotoxigenic Escherichia coli (VTEC), are encoded on temperate bacteriophages. Several studies reported the loss of the vtx genes after multiple subcultivation steps or long preservation. The objective of this study was to determine if the loss of the verocytotoxin genes can already occur during the first subcultivation step. Consequently, the stability of the vtx genes were tested in 40 isolates originating from 40 vtx-positive fecal samples after the first subcultivation step following the isolation procedure. The loss occurred in 12 out of 40 strains tested and was rather rare among the O157 strains compared to the non-O157 strains. This is the first study demonstrating that the loss of the verocytotoxin genes can already occur after the first subcultivation step. This may lead to an underestimation of VTEC positive samples

    A qPCR assay to detect and quantify Shiga toxin-producing E. coli (STEC) in cattle and on farms : a potential predictive tool for STEC culture-positive farms

    Get PDF
    Shiga toxin-producing E. coli (STEC), of various serogroups harboring the intimin gene, form a serious threat to human health. They are asymptomatically carried by cattle. In this study, a quantitative real-time PCR (qPCR) method was developed as a molecular method to detect and quantify Shiga toxin genes stx1 and stx2 and the intimin gene eae. Subsequently, 59 fecal samples from six farms were tested using qPCR and a culture method as a reference. Three farms had contaminated animals as demonstrated by the culture method. Culture-positive farms showed moderate significantly higher stx prevalences than culture-negative farms (p = 0.05). This is the first study which showed preliminary results that qPCR can predict STEC farm contamination, with a specificity of 77% and a sensitivity of 83%, as compared with the culture method. Furthermore, the presence or quantity of stx genes in feces was not correlated to the isolation of STEC from the individual animal. Quantitative data thus did not add value to the results. Finally, the detection of both stx and eae genes within the same fecal sample or farm using qPCR was not correlated with the isolation of an eae-harboring STEC strain from the respective sample or farm using the culture method

    Use of antibody responses against locus of enterocyte effacement (LEE)-encoded antigens to monitor enterohemorrhagic Escherichia coli infections on cattle farms

    No full text
    Enterohemorrhagic Escherichia coli (EHEC) is a significant zoonotic pathogen causing severe disease associated with watery and bloody diarrhea, hemorrhagic colitis, and the hemolytic-uremic syndrome (HUS) in humans. Infections are frequently associated with contact with EHEC-contaminated ruminant feces. Both natural and experimental infection of cattle induces serum antibodies against the LEE-encoded proteins intimin, EspA, EspB, and Tir and the Shiga toxins Stx1 and Stx2, although the latter are poorly immunogenic in cattle. We determined whether antibodies and/or the kinetics of antibody responses against intimin, Tir, EspA, and/or EspB can be used for monitoring EHEC infections in beef cattle herds in order to reduce carcass contamination at slaughter. We examined the presence of serum antibodies against recombinant O157:H7 E. coli intimin EspA, EspB, and Tir during a cross-sectional study on 12 cattle farms and during a longitudinal time course study on two EHEC-positive cattle farms. We searched for a possible correlation between intimin, Tir, EspA, and/or EspB antibodies and fecal excretion of EHEC O157, O145, O111, O103, or O26 seropathotypes. The results indicated that serum antibody responses to EspB and EspA might be useful for first-line screening at the herd level for EHEC O157, O26, and most likely also for EHEC O103 infections. However, antibody responses against EspB are of less use for monitoring individual animals, since some EHEC-shedding animals did not show antibody responses and since serum antibody responses against EspB could persist for several months even when shedding had ceased
    corecore