100 research outputs found

    Landscape-related ground ice variability on the Yukon coastal plain inferred from computed tomography and remote sensing

    Get PDF
    Warming in the Arctic causes strong environmental changes with degradation of permafrost (permanently frozen ground). Active layer deepening (gradual thaw) and permafrost erosion (abrupt thaw) results in the mobilization and lateral transport of organic carbon, altering current carbon cycling in the Arctic. Ground ice content is a crucial factor limiting our understanding and ability to determine the rates and dynamics of permafrost thaw and its impact on potential thaw subsidence rates, changes in lateral hydrological pathways and its driving mechanisms on a landscape scale. In this study we investigate ground ice content and its characteristics across the most dominant landscape units of the Yukon coastal plain (Canadian Arctic), using two spatially and technically contrasting approaches. In our bottom-up approach, twelve permafrost cores were collected from moraine, lacustrine, fluvial and glaciofluvial deposits using a SIPRE corer (mean drilling depth of 2 m) in spring of 2019. Ground ice and sediment contents within polygon centers were analyzed and classified using computed tomography and image recognition software (k-means). Our top-down approach quantified ice-wedge volumes from remote sensing imagery tracing the circumference of polygon troughs over the same area. Preliminary results - extrapolated to the entire coastal plain - show that the ground-ice content in polygon centers vary significantly from massive ice in the polygon troughs (wedge-ice). Total ice volume was estimated around 80.2 vol.-%, of which 68.2 ± 18.1 vol.-% was attributed to ground ice in polygon centers, and 12 ± 3.1 vol.-% of the landscape is massive ice in wedge-ice along polygon troughs. Additionally, differences among and between landscape units are also substantial, with highest ice volume contents in moraines landscapes, where polygon centers contain 58.8 vol.-% ground ice and wedge-ice volume is 16.2 vol.-%), while the lowest ice contents are found in glacio-fluvial deposits (22.1 vol.-% resp. 9.1 vol.-%). Our results reveal a higher average and a larger variability in ground ice contents than previously found, suggesting a need of both ground-based measurements and remote sensing imagery to further our understanding of the future landscape subsidence, but also to avoid a likely under- or overestimation associated with the chosen approach. We conclude that due to the high ground ice contents on the Yukon coastal plain, substantial changes of the permafrost landscape will occur under current warming trends. These will include subsidence, abrupt erosion, changes in hydrology and organic carbon mobilization, degradation and export processes, which will differ between landscape units

    Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 3153-3166, doi:10.5194/bg-7-3153-2010.Climate warming in northeastern Siberia may induce thaw-mobilization of the organic carbon (OC) now held in permafrost. This study investigated the composition of terrestrial OC exported to Arctic coastal waters to both obtain a natural integration of terrestrial permafrost OC release and to further understand the fate of released carbon in the extensive Siberian Shelf Seas. Application of a variety of elemental, molecular and isotopic (δ13C and Δ14C) analyses of both surface water suspended particulate matter and underlying surface sediments along a 500 km transect from Kolyma River mouth to the mid-shelf of the East Siberian Sea yielded information on the sources, degradation status and transport processes of thaw-mobilized soil OC. A three end-member dual-carbon-isotopic mixing model was applied to deduce the relative contributions from riverine, coastal erosion and marine sources. The mixing model was solved numerically using Monte Carlo simulations to obtain a fair representation of the uncertainties of both end-member composition and the end results. Riverine OC contributions to sediment OC decrease with increasing distance offshore (35±15 to 13±9%), whereas coastal erosion OC exhibits a constantly high contribution (51±11 to 60±12%) and marine OC increases offshore (9±7 to 36±10%). We attribute the remarkably strong imprint of OC from coastal erosion, extending up to ~500 km from the coast, to efficient offshoreward transport in these shallow waters presumably through both the benthic boundary layer and ice-rafting. There are also indications of simultaneous selective preservation of erosion OC compared to riverine OC. Molecular degradation proxies and radiocarbon contents indicated a degraded but young (Δ14C ca. −60‰ or ca. 500 14C years) terrestrial OC pool in surface water particulate matter, underlain by a less degraded but old (Δ14C ca. −500‰ or ca. 5500 14C years) terrestrial OC pool in bottom sediments. We suggest that the terrestrial OC fraction in surface water particulate matter is mainly derived from surface soil and recent vegetation fluvially released as buoyant organic-rich aggregates (e.g., humics), which are subjected to extensive processing during coastal transport. In contrast, terrestrial OC in the underlying sediments is postulated to originate predominantly from erosion of mineral-rich Pleistocene coasts (i.e., yedoma) and inland mineral soils. Sorptive association of this organic matter with mineral particles protects the OC from remineralization and also promotes rapid settling (ballasting) of the OC. Our findings corroborate recent studies by indicating that different Arctic surface soil OC pools exhibit distinguishing susceptibilities to degradation in coastal waters. Consequently, the general postulation of a positive feedback to global warming from degradation of permafrost carbon may be both attenuated (by reburial of one portion) and geographically displaced (degradation of released terrestrial permafrost OC far out over the Arctic shelf seas).The ISSS-08 program was supported by the Knut and Alice Wallenberg Foundation, Headquarters of the Far Eastern Branch of the Russian Academy of Sciences, the Swedish Research Council (VR Contract No. 621-2004-4039 and 621-2007-4631), the US National Oceanic and Atmospheric Administration (Siberian Shelf Study), the Russian Foundation of Basic Research (08-05-13572, 08-05-00191-a, and 07-05-00050a), the Swedish Polar Research Secretariat, the Arctic Co-Op Program of the Nordic Council of Ministers (331080-70219) and the National Science Foundation (OPP ARC 0909546). O¨ . G. also acknowledges financial support as an Academy Research Fellow from the Swedish Royal Academy of Sciences, L. S. a Marie Curie grant (contract no. PIEF-GA-2008-220424), T. E. an NSF grant (ARC-0909377) and A. A. support from the Knut and Alice Wallenberg Foundation

    Исследование огнезащищенных фанерных плит на горючесть и токсичность

    Get PDF
    Ціль роботи порівняльне вивчення звичайних фанерних плит, а також просочених вогнебіозахистною сумішю, яка складається із суміши сольового антипирену та полімерного антисептика ДСА 2, а також гідрофобізуючого препарату «Силол» на горючість та токсичність. В ході роботы було показано, що фанерна плита, яку оброблено вогнебіозахистною сумішю, по показникам горючості та токсич ності значно превосходить не оброблену фанеру.The target of the work is comparative study of plywood — ordinary and pretreated by salt fire retardant and polymeric antiseptic ДСА 2 mixture with hydrophobying composition «Силол» — for the combustibility and the toxicity. It was shown that pretreated plywood is more toxic and less combustible

    Arctic deltaic lake sediments as recorders of fluvial organic matter deposition

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Earth Science 4 (2016): 77, doi:10.3389/feart.2016.00077.Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, δ13C, Δ14C) and molecular organic geochemistry (lignin, leaf waxes). High-resolution age models (137Cs, 210Pb) of downcore lake sediment records (n = 11) along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels). Comparison with earlier published Mackenzie River depth profiles shows that (i) lake sediments reflect the riverine surface suspended load, and (ii) hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale) riverine fluxes and may prove instrumental in shedding light on past behavior of arctic rivers, as well as how they respond to a changing climate.Funding was provided by the US National Science Foundation as part of the Arctic Great Rivers Observatory (NSF-0732522 and NSF-1107774), as well as the Netherlands Organization for Scientific Research (Rubicon #825.10.022, and Veni #863.12.004). Additional funding for the lake coring was provided from WHOI through its Ocean and Climate Change Institute

    Radium inputs into the Arctic Ocean from rivers: a basin-wide estimate

    Get PDF
    Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for 226Ra and to refine the estimates for 228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual 226Ra and 228Ra fluxes to the Arctic Ocean are 7.0 – 9.4 x 1014 dpm y-1 and 15-18 x 1014 dpm y-1, respectively. Of these totals, 44% and 60% of the river 226Ra and 228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual 226Ra and 228Ra fluxes of 7.4 – 17 x 1015 and 15 – 27 x 1015 dpm y-1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone

    Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds

    Get PDF
    Relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record, yet the dynamics of terrestrial carbon sequestration have important implications for the carbon cycle. Vascular plant carbon may encounter multiple potential intermediate storage pools and transport trajectories, and the age of vascular plant carbon accumulating in marine sediments will reflect these different pre-depositional histories. Here, we examine down-core 14C profiles of higher plant leaf wax-derived fatty acids isolated from high fidelity sedimentary sequences spanning the so-called “bomb-spike”, and encompassing a ca. 60-degree latitudinal gradient from tropical (Cariaco Basin), temperate (Saanich Inlet), and polar (Mackenzie Delta) watersheds to constrain integrated vascular plant carbon storage/transport times (“residence times”). Using a modeling framework, we find that, in addition to a "young" (conditionally defined as < 50 y) carbon pool, an old pool of compounds comprises 49 to 78 % of the fractional contribution of organic carbon (OC) and exhibits variable ages reflective of the environmental setting. For the Mackenzie Delta sediments, we find a mean age of the old pool of 28 ky (±9.4, standard deviation), indicating extensive pre-aging in permafrost soils, whereas the old pools in Saanich Inlet and Cariaco Basin sediments are younger, 7.9 (±5.0) and 2.4 (±0.50) to 3.2 (±0.54) ky, respectively, indicating less protracted storage in terrestrial reservoirs. The "young" pool showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (comprising 24% and 16% of this pool, respectively), likely reflecting episodic transport of OC from steep hillside slopes surrounding Saanich Inlet and annual spring flood deposition in the Mackenzie Delta, respectively. Contributions of 5-10 year old OC to the Cariaco Basin show a short delay of OC inflow, potentially related to transport time to the offshore basin. Modeling results also indicate that the Mackenzie Delta has an influx of young but decadal material (20-30 years of age), pointing to the presence of an intermediate reservoir. Overall, these results show that a significant fraction of vascular plant C undergoes pre-aging in terrestrial reservoirs prior to accumulation in deltaic and marine sediments. The age distribution, reflecting both storage and transport times, likely depends on landscape-specific factors such as local topography, hydrographic characteristics, and mean annual temperature of the catchment, all of which affect the degree of soil buildup and preservation. We show that catchment-specific carbon residence times across landscapes can vary by an order of magnitude, with important implications both for carbon cycle studies and for the interpretation of molecular terrestrial paleoclimate records preserved in sedimentary sequences

    Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 244 (2019): 502-521, doi:10.1016/j.gca.2018.09.034.Relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record, yet the dynamics of terrestrial carbon sequestration have important implications for the carbon cycle. Vascular plant carbon may encounter multiple potential intermediate storage pools and transport trajectories, and the age of vascular plant carbon accumulating in marine sediments will reflect these different predepositional histories. Here, we examine down-core 14C profiles of higher plant leaf waxderived fatty acids isolated from high fidelity sedimentary sequences spanning the socalled “bomb-spike”, and encompassing a ca. 60-degree latitudinal gradient from tropical (Cariaco Basin), temperate (Saanich Inlet), and polar (Mackenzie Delta) watersheds to constrain integrated vascular plant carbon storage/transport times (“residence times”). Using a modeling framework, we find that, in addition to a "young" (conditionally defined as < 50 y) carbon pool, an old pool of compounds comprises 49 to 78 % of the fractional contribution of organic carbon (OC) and exhibits variable ages reflective of the environmental setting. For the Mackenzie Delta sediments, we find a mean age of the old pool of 28 ky (±9.4, standard deviation), indicating extensive pre-aging in permafrost soils, whereas the old pools in Saanich Inlet and Cariaco Basin sediments are younger, 7.9 (±5.0) and 2.4 (±0.50) to 3.2 (±0.54) ky, respectively, indicating less protracted storage in terrestrial reservoirs. The "young" pool showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (comprising 24% and 16% of this pool, respectively), likely reflecting episodic transport of OC from steep hillside slopes surrounding Saanich Inlet and annual spring flood deposition in the Mackenzie Delta, respectively. Contributions of 5-10 year old OC to the Cariaco Basin show a short delay of OC inflow, potentially related to transport time to the offshore basin. Modeling results also indicate that the Mackenzie Delta has an influx of young but decadal material (20-30 years of age), pointing to the presence of an intermediate reservoir. Overall, these results show that a significant fraction of vascular plant C undergoes pre-aging in terrestrial reservoirs prior to accumulation in deltaic and marine sediments. The age distribution, reflecting both storage and transport times, likely depends on landscape-specific factors such as local topography, hydrographic characteristics, and mean annual temperature of the catchment, all of which affect the degree of soil buildup and preservation. We show that catchment-specific carbon residence times across landscapes can vary by an order of magnitude, with important implications both for carbon cycle studies and for the interpretation of molecular terrestrial paleoclimate records preserved in sedimentary sequences.Financial support was provided by a Schlanger Ocean Drilling Graduate Fellowship (NJD), an EPA STAR Graduate Fellowship (NJD), a Dutch NWO Veni grant #825.10.022 (JEV), US NSF grants #OCE-0137005 (TIE and KAH), #OCE-052626800 (TIE), #OCE-0961980 (ERMD), and #EAR-0447323 (ERMD and JRS), a Swiss SNF grant #200021_140850 (TIE), a Swedish Research Council grant #2013-05204 (MS), as well as the Stanley Watson Chair for Excellence in Oceanography at WHOI (TIE) and the WHOI Arctic Research Initiative (TIE and LG)
    corecore