10,688 research outputs found

    Observations of nitrogen isotope fractionation in deeply embedded protostars

    Full text link
    (Abridged) The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment in the solids. Several mechanisms have been proposed to explain the variations, including chemical fractionation. However, observational results that constrain the fractionation models are scarce. While there is evidence of 15N-enrichment in prestellar cores, it is unclear how the signature evolves into the protostellar phases. Our aim is to measure the 14N/15N ratio around three nearby, embedded low-to-intermediate-mass protostars. Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of H13CN, HC15N, HN13C, and H15NC transitions was observed with the APEX telescope. The 14N/15N ratios were derived from the integrated intensities assuming a standard 12C/13C ratio. The assumption of optically thin emission was verified using radiative transfer modeling and hyperfine structure fitting. Two sources, IRAS 16293A and R CrA IRS7B, show 15N-enrichment by a factor of around 1.5-2.5 in both HCN and HNC with respect to the solar composition. Solar composition cannot be excluded for the third source, OMC-3 MMS6. Furthermore, there are indications of a trend toward increasing 14N/15N ratios with increasing outer envelope temperature. The enhanced 15N abundances in HCN and HNC found in two Class~0 sources (14N/15N of 160-290) and the tentative trend toward a temperature-dependent 14N/15N ratio are consistent with the chemical fractionation scenario, but 14N/15N ratios from additional tracers are indispensable for testing the models. Spatially resolved observations are needed to distinguish between chemical fractionation and isotope-selective photochemistry.Comment: Accepted for publication in Astronomy and Astrophysics. 16 pages, 13 figure

    Construction of Parseval wavelets from redundant filter systems

    Full text link
    We consider wavelets in L^2(R^d) which have generalized multiresolutions. This means that the initial resolution subspace V_0 in L^2(R^d) is not singly generated. As a result, the representation of the integer lattice Z^d restricted to V_0 has a nontrivial multiplicity function. We show how the corresponding analysis and synthesis for these wavelets can be understood in terms of unitary-matrix-valued functions on a torus acting on a certain vector bundle. Specifically, we show how the wavelet functions on R^d can be constructed directly from the generalized wavelet filters.Comment: 34 pages, AMS-LaTeX ("amsproc" document class) v2 changes minor typos in Sections 1 and 4, v3 adds a number of references on GMRA theory and wavelet multiplicity analysis; v4 adds material on pages 2, 3, 5 and 10, and two more reference

    Mass-Selection and the Evolution of the Morphology-Density Relation from z=0.8 to z=0

    Get PDF
    We examined the morphology-density relations for galaxy samples selected by luminosity and by mass in each of five massive X-ray clusters from z=0.023 to 0.83 for 674 spectroscopically-confirmed members. Rest-frame optical colors and visual morphologies were obtained primarily from Hubble Space Telescope images. Morphology-density relations (MDR) are derived in each cluster from a complete, luminosity-selected sample of 452 galaxies with a magnitude limit M_V < M^{*}_{V} + 1. The change in the early-type fraction with redshift matches previous work for massive clusters of galaxies. We performed a similar analysis, deriving MDRs for complete, mass-selected samples of 441 galaxies with a mass-limit of 10^{10.6} M_{\sun}. Our mass limit includes faint objects, the equivalent of =~1 mag below L^{*} for the red cluster galaxies, and encompasses =~70% of the stellar mass in cluster galaxies. The MDRs in the mass-selected sample at densities of Sigma > 50 galaxies Mpc^{-2} are similar to those in the luminosity-selected sample but show larger early-type fractions. However, the trend with redshift in the fraction of elliptical and S0 galaxies with masses > 10^{10.6} M_{\sun} differs significantly between the mass- and luminosity-selected samples. The clear trend seen in the early-type fraction from z=0 to z=~ 0.8 is not found in mass-selected samples. The early-type galaxy fraction changes much less, and is consistent with being constant at 92% +/- 4% at \Sigma> 500 galaxies Mpc^{-2} and 83 +/- 3% at 50 < \Sigma < 500 galaxies Mpc^{-2}. This suggests that galaxies of mass lower than > 10^{10.6} M_{\sun} play a significant role in the evolution of the early-type fraction in luminosity-selected samples. (Abstract abridged)Comment: 18 pages in emulate ApJ format, with 10 color figures, Accepted to ApJ. Version updated to reflect published version, includes new references and a correction to table

    The Possible z=0.83 Precursors of z=0 M* Early-type Cluster Galaxies

    Full text link
    We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as measured from velocity dispersions and half-light radii with a scatter of 0.2 dex in the mass for early-type galaxies. When we restrict our sample of members to high stellar masses, > 1e11.1 Msun (M* in the Schechter mass function for cluster galaxies), we find that the fraction of early-type galaxies is 79 +/- 6% at z=0.83 and 87 +/- 6% at z=0.023 for the Coma cluster, consistent with no evolution. Previous work with luminosity-selected samples finds that the early-type fraction in rich clusters declines from =~80% at z=0 to =~60% at z=0.8. The observed evolution in the early-type fraction from luminosity-selected samples must predominately occur among sub-M* galaxies. As M* for field and group galaxies, especially late-types, is below M* for clusters galaxies, infall could explain most of the recent early-type fraction growth. Future surveys could determine the morphological distributions of lower mass systems which will confirm or refute this explanation.Comment: 5 pages in emulate ApJ format with three color figures. Accepted for publication in ApJ Letters, v642n2. Updated to correct grammatical and typographic errors found by the journa

    ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03

    Full text link
    The far-infrared emission from rich galaxy clusters is investigated. Maps have been obtained by ISO at 60, 100, 135, and 200 microns using the PHT-C camera. Ground based imaging and spectroscopy were also acquired. Here we present the results for the cooling flow cluster Sersic 159-03. An infrared source coincident with the dominant cD galaxy is found. Some off-center sources are also present, but without any obvious counterparts.Comment: 6 pages, 4 postscript figures, accepted for publication in `Astronomy and Astrophysics

    Harmonic analysis of iterated function systems with overlap

    Full text link
    In this paper we extend previous work on IFSs without overlap. Our method involves systems of operators generalizing the more familiar Cuntz relations from operator algebra theory, and from subband filter operators in signal processing.Comment: 37 page
    • 

    corecore