2,761 research outputs found

    On the Dynamics of Dengue Virus type 2 with Residence Times and Vertical Transmission

    Full text link
    A two-patch mathematical model of Dengue virus type 2 (DENV-2) that accounts for vectors' vertical transmission and between patches human dispersal is introduced. Dispersal is modeled via a Lagrangian approach. A host-patch residence-times basic reproduction number is derived and conditions under which the disease dies out or persists are established. Analytical and numerical results highlight the role of hosts' dispersal in mitigating or exacerbating disease dynamics. The framework is used to explore dengue dynamics using, as a starting point, the 2002 outbreak in the state of Colima, Mexico

    Plasmablastic Lymphoma: A Systematic Review

    Get PDF
    Plasmablastic lymphoma (PBL) is a very aggressive variant of diffuse large B-cell lymphoma initially described in the oral cavity of HIV-infected individuals. PBL represents a diagnostic challenge given its characteristic morphology and lack of CD20 expression, and also a therapeutic challenge, with early responses to therapy, but with high relapse rates and poor prognosis. In recent years, our understanding and clinical experience with PBL has increased in both HIV-positive and -negative settings. However, given its rarity, most of the data available rely on case reports and case series. The main goal of this article is to systematically review the most recent advances in epidemiology; pathophysiology; clinical, pathologic, and molecular characteristics; therapy; and prognosis in patients with PBL. Specific covered topics include new pathological markers for diagnosis, its association with Epstein-Barr virus, and the need of more intensive therapies

    Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications

    Full text link
    [EN] The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed.The authors acknowledge the Spanish Ministerio de Economía y Competitividad (MINECO) for the financial support under the project ENE/2015-69203-R.Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; Del Castillo, LF.; Compañ Moreno, V. (2020). Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers. 12(9):1-41. https://doi.org/10.3390/polym12091861S141129Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977kLi, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5Scott, K., & Shukla, A. K. (2004). Polymer electrolyte membrane fuel cells: Principles and advances. Reviews in Environmental Science and Bio/Technology, 3(3), 273-280. doi:10.1007/s11157-004-6884-zZhang, H., & Shen, P. K. (2012). Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews, 112(5), 2780-2832. doi:10.1021/cr200035sCano, Z. P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3(4), 279-289. doi:10.1038/s41560-018-0108-1Campanari, S., Manzolini, G., & Garcia de la Iglesia, F. (2009). Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources, 186(2), 464-477. doi:10.1016/j.jpowsour.2008.09.115Merle, G., Wessling, M., & Nijmeijer, K. (2011). Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377(1-2), 1-35. doi:10.1016/j.memsci.2011.04.043Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030Ormerod, R. M. (2002). Solid oxide fuel cells. Chemical Society Reviews, 32(1), 17-28. doi:10.1039/b105764mDresp, S., Luo, F., Schmack, R., Kühl, S., Gliech, M., & Strasser, P. (2016). An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy & Environmental Science, 9(6), 2020-2024. doi:10.1039/c6ee01046fHaile, S. M., Boysen, D. A., Chisholm, C. R. I., & Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410(6831), 910-913. doi:10.1038/35073536Pourcelly, G. (2011). Membranes for low and medium temperature fuel cells. State-of-the-art and new trends. Petroleum Chemistry, 51(7), 480-491. doi:10.1134/s0965544111070103Scott, K., Xu, C., & Wu, X. (2013). Intermediate temperature proton-conducting membrane electrolytes for fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 3(1), 24-41. doi:10.1002/wene.64Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001Park, C. H., Lee, C. H., Guiver, M. D., & Lee, Y. M. (2011). Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 36(11), 1443-1498. doi:10.1016/j.progpolymsci.2011.06.001Sun, X., Simonsen, S., Norby, T., & Chatzitakis, A. (2019). Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes, 9(7), 83. doi:10.3390/membranes9070083Lee, K.-S., Maurya, S., Kim, Y. S., Kreller, C. R., Wilson, M. S., Larsen, D., … Mukundan, R. (2018). Intermediate temperature fuel cells via an ion-pair coordinated polymer electrolyte. Energy & Environmental Science, 11(4), 979-987. doi:10.1039/c7ee03595kMauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023Alberti, G., Narducci, R., Di Vona, M. L., & Giancola, S. (2013). More on Nafion Conductivity Decay at Temperatures Higher than 80 °C: Preparation and First Characterization of In-Plane Oriented Layered Morphologies. Industrial & Engineering Chemistry Research, 52(31), 10418-10424. doi:10.1021/ie303628cLi, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519Alberti, G., Narducci, R., & Sganappa, M. (2008). Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. Journal of Power Sources, 178(2), 575-583. doi:10.1016/j.jpowsour.2007.09.034Subianto, S., Choudhury, N., & Dutta, N. (2013). Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone. Nanomaterials, 4(1), 1-18. doi:10.3390/nano4010001Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., … Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221-238. doi:10.1016/j.jpowsour.2007.03.044Zeis, R. (2015). Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein Journal of Nanotechnology, 6, 68-83. doi:10.3762/bjnano.6.8Abdul Rasheed, R. K., Liao, Q., Caizhi, Z., & Chan, S. H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142-3165. doi:10.1016/j.ijhydene.2016.10.078Rikukawa, M., & Sanui, K. (2000). Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25(10), 1463-1502. doi:10.1016/s0079-6700(00)00032-0Kurdakova, V., Quartarone, E., Mustarelli, P., Magistris, A., Caponetti, E., & Saladino, M. L. (2010). PBI-based composite membranes for polymer fuel cells. Journal of Power Sources, 195(23), 7765-7769. doi:10.1016/j.jpowsour.2009.09.064Wang, S., Zhang, G., Han, M., Li, H., Zhang, Y., Ni, J., … Na, H. (2011). Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 36(14), 8412-8421. doi:10.1016/j.ijhydene.2011.03.147Lipman, T. E., Edwards, J. L., & Kammen, D. M. (2004). Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems. Energy Policy, 32(1), 101-125. doi:10.1016/s0301-4215(02)00286-0Savinell, R., Yeager, E., Tryk, D., Landau, U., Wainright, J., Weng, D., … Rogers, C. (1994). A Polymer Electrolyte for Operation at Temperatures up to 200°C. Journal of The Electrochemical Society, 141(4), L46-L48. doi:10.1149/1.2054875Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650hAraya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024Vogel, H., & Marvel, C. S. (1961). Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science, 50(154), 511-539. doi:10.1002/pol.1961.1205015419Mack, F., Klages, M., Scholta, J., Jörissen, L., Morawietz, T., Hiesgen, R., … Zeis, R. (2014). Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes. Journal of Power Sources, 255, 431-438. doi:10.1016/j.jpowsour.2014.01.032A. Perry, K., L. More, K., Andrew Payzant, E., Meisner, R. A., Sumpter, B. G., & Benicewicz, B. C. (2013). A comparative study of phosphoric acid-dopedm-PBI membranes. Journal of Polymer Science Part B: Polymer Physics, 52(1), 26-35. doi:10.1002/polb.23403Quartarone, E., Angioni, S., & Mustarelli, P. (2017). Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 10(7), 687. doi:10.3390/ma10070687Kirubakaran, A., Jain, S., & Nema, R. K. (2009). A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13(9), 2430-2440. doi:10.1016/j.rser.2009.04.004Ponomarev, I. I., Goryunov, E. I., Petrovskii, P. V., Ponomarev, I. I., Volkova, Y. A., Razorenov, D. Y., & Khokhlov, A. R. (2009). Synthesis of new monomer 3,3′-diamino-4,4′-bis{p-[(diethoxyphosphoryl)methyl]phenylamino}diphenyl sulfone and polybenzimidazoles on its basis. Doklady Chemistry, 429(2), 315-320. doi:10.1134/s0012500809120040Ng, F., Péron, J., Jones, D. J., & Rozière, J. (2011). Synthesis of novel proton‐conducting highly sulfonated polybenzimidazoles for PEMFC and the effect of the type of bisphenyl bridge on polymer and membrane properties. Journal of Polymer Science Part A: Polymer Chemistry, 49(10), 2107-2117. doi:10.1002/pola.24630Carollo, A., Quartarone, E., Tomasi, C., Mustarelli, P., Belotti, F., Magistris, A., … Righetti, P. P. (2006). Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. Journal of Power Sources, 160(1), 175-180. doi:10.1016/j.jpowsour.2006.01.081Mustarelli, P., Quartarone, E., Grandi, S., Angioni, S., & Magistris, A. (2012). Increasing the permanent conductivity of PBI membranes for HT-PEMs. Solid State Ionics, 225, 228-231. doi:10.1016/j.ssi.2012.04.007Conti, F., Majerus, A., Di Noto, V., Korte, C., Lehnert, W., & Stolten, D. (2012). Raman study of the polybenzimidazole–phosphoric acid interactions in membranes for fuel cells. Physical Chemistry Chemical Physics, 14(28), 10022. doi:10.1039/c2cp40553aWippermann, K., Wannek, C., Oetjen, H.-F., Mergel, J., & Lehnert, W. (2010). Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters. Journal of Power Sources, 195(9), 2806-2809. doi:10.1016/j.jpowsour.2009.10.100Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337bLi, Z., He, G., Zhang, B., Cao, Y., Wu, H., Jiang, Z., & Tiantian, Z. (2014). Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Interfaces, 6(12), 9799-9807. doi:10.1021/am502236vZhou, Y., Yang, J., Su, H., Zeng, J., Jiang, S. P., & Goddard, W. A. (2014). Insight into Proton Transfer in Phosphotungstic Acid Functionalized Mesoporous Silica-Based Proton Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 136(13), 4954-4964. doi:10.1021/ja411268qZeng, J., Zhou, Y., Li, L., & Jiang, S. P. (2011). Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Physical Chemistry Chemical Physics, 13(21), 10249. doi:10.1039/c1cp20076cLiu, X., Li, Y., Xue, J., Zhu, W., Zhang, J., Yin, Y., … Guiver, M. D. (2019). Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nature Communications, 10(1). doi:10.1038/s41467-019-08622-2Zhai, & Li. (2019). Polyoxometalate–Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications. Molecules, 24(19), 3425. doi:10.3390/molecules24193425Escorihuela, J., García-Bernabé, A., & Compañ, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 12(6), 1374. doi:10.3390/polym12061374Yang, J. S., Cleemann, L. N., Steenberg, T., Terkelsen, C., Li, Q. F., Jensen, J. O., … He, R. H. (2013). High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC. Fuel Cells, 14(1), 7-15. doi:10.1002/fuce.201300070Chaudhari, H. D., Illathvalappil, R., Kurungot, S., & Kharul, U. K. (2018). Preparation and investigations of ABPBI membrane for HT-PEMFC by immersion precipitation method. Journal of Membrane Science, 564, 211-217. doi:10.1016/j.memsci.2018.07.026Shigematsu, A., Yamada, T., & Kitagawa, H. (2011). Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 133(7), 2034-2036. doi:10.1021/ja109810wAgmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-jBouchet, R. (1999). Proton conduction in acid doped polybenzimidazole. Solid State Ionics, 118(3-4), 287-299. doi:10.1016/s0167-2738(98)00466-4Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820aWeingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951Wang, C., Li, Z., Sun, P., Pei, H., & Yin, X. (2020). Preparation and Properties of Covalently Crosslinked Polybenzimidazole High Temperature Proton Exchange Membranes Doped with High Sulfonated Polyphosphazene. Journal of The Electrochemical Society, 167(10), 104517. doi:10.1149/1945-7111/ab9d60Rajabi, Z., Javanbakht, M., Hooshyari, K., Badiei, A., & Adibi, M. (2020). High temperature composite membranes based on polybenzimidazole and dendrimer amine functionalized SBA-15 mesoporous silica for fuel cells. New Journal of Chemistry, 44(13), 5001-5018. doi:10.1039/c9nj05369gEscorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775Abouzari-Lotf, E., Zakeri, M., Nasef, M. M., Miyake, M., Mozarmnia, P., Bazilah, N. A., … Ahmad, A. (2019). Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 412, 238-245. doi:10.1016/j.jpowsour.2018.11.057Quartarone, E., & Mustarelli, P. (2012). Polymer fuel cells based on polybenzimidazole/H3PO4. Energy & Environmental Science, 5(4), 6436. doi:10.1039/c2ee03055aSamms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(4), 1225-1232. doi:10.1149/1.1836621Yang, J., Li, Q., Cleemann, L. N., Xu, C., Jensen, J. O., Pan, C., … He, R. (2012). Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry, 22(22), 11185. doi:10.1039/c2jm30217aYang, J., Aili, D., Li, Q., Xu, Y., Liu, P., Che, Q., … He, R. (2013). Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells. Polymer Chemistry, 4(17), 4768. doi:10.1039/c3py00408bLi, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725Berber, M. R., & Nakashima, N. (2019). Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions. Journal of Membrane Science, 591, 117354. doi:10.1016/j.memsci.2019.117354Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., … Meng, Q. (2013). Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(15), 6494-6502. doi:10.1016/j.ijhydene.2013.03.051Ou, T., Chen, H., Hu, B., Zheng, H., Li, W., & Wang, Y. (2018). A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 43(27), 12337-12345. doi:10.1016/j.ijhydene.2018.04.166Bruma, M., Fitch, J. W., & Cassidy, P. E. (1996). Hexafluoroisopropylidene-Containing Polymers for High-Performance Applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 36(1), 119-159. doi:10.1080/15321799608009644Qian, G., & Benicewicz, B. C. (2009). Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 47(16), 4064-4073. doi:10.1002/pola.23467Yang, J., Xu, Y., Liu, P., Gao, L., Che, Q., & He, R. (2015). Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochimica Acta, 160, 281-287. doi:10.1016/j.electacta.2015.01.094Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:113.0.co;2-5Escorihuela, J., Marcelis, A. T. M., & Zuilhof, H. (2015). Metal‐Free Click Chemistry Reactions on Surfaces. Advanced Materials Interfaces, 2(13), 1500135. doi:10.1002/admi.201500135Sen, R., Escorihuela, J., Smulders, M. M. J., & Zuilhof, H. (2016). Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions. Langmuir, 32(14), 3412-3419. doi:10.1021/acs.langmuir.6b00427Lowe, A. B. (2010). Thiol-ene «click» reactions and recent applications in polymer and materials synthesis. Polym. Chem., 1(1), 17-36. doi:10.1039/b9py00216bEscorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033dYao, B., Mei, J., Li, J., Wang, J., Wu, H., Sun, J. Z., … Tang, B. Z. (2014). Catalyst-Free Thiol–Yne Click Polymerization: A Powerful and Facile Tool for Preparation of Functional Poly(vinylene sulfide)s. Macromolecules, 47(4), 1325-1333. doi:10.1021/ma402559aEscorihuela, J., Bañuls, M.-J., Puchades, R., & Maquieira, Á. (2014). Site-specific immobilization of DNA on silicon surfaces by using the thiol–yne reaction. J. Mater. Chem. B, 2(48), 8510-8517. doi:10.1039/c4tb01108bSen, R., Gahtory, D., Escorihuela, J., Firet, J., Pujari, S. P., & Zuilhof, H. (2017). Approach Matters: The Kinetics of Interfacial Inverse-Electron Demand Diels-Alder Reactions. Chemistry - A European Journal, 23(53), 13015-13022. doi:10.1002/chem.201703103MacKenzie, D. A., Sherratt, A. R., Chigrinova, M., Cheung, L. L., & Pezacki, J. P. (2014). Strain-promoted cycloadditions involving nitrones and alkynes—rapid tunable reactions for bioorthogonal labeling. Current Opinion in Chemical Biology, 21, 81-88. doi:10.1016/j.cbpa.2014.05.023Ning, X., Temming, R. P., Dommerholt, J., Guo, J., Ania, D. B., Debets, M. F., … van Delft, F. L. (2010). Protein Modification by Strain-Promoted Alkyne-Nitrone Cycloaddition. Angewandte Chemie International Edition, 49(17), 3065-3068. doi:10.1002/anie.201000408Sen, R., Escorihuela, J., van Delft, F., & Zuilhof, H. (2017). Rapid and Complete Surface Mo

    Tackling Ischemic Reperfusion Injury With the Aid of Stem Cells and Tissue Engineering

    Get PDF
    Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings

    Liturgusa maya, Saussure & Zehntner, 1894 (Mantodea-Liturgusidae), una especie de mantis frecuente en cultivos de cacao en la región Tumbes, Perú

    Get PDF
    Liturgusa maya es una especie criptica que se desplaza sobre tallos de cacao y cítricos. El objetivo de este estudio fue determinar algunos aspectos de su biología y comportamiento e identificar parasitoides de ootecas. Se colectaron ninfas y adultos en los tallos de cacao para obtener ootecas y determinar el periodo de incubación y el número de individuos por ooteca, igualmente se colectaron ootecas para determinar la presencia de parasitoides. La incubación fluctúa entre 15 y 17 días y los individuos por ooteca entre 23 y 37. El estado adulto hembra mide en promedio 25,30 mm de longitud y el macho 20,38. De las ootecas colectadas en campo se recuperaron tres especies de parasitoides: Podagrion sp., Eupelmus sp., y Horismenus sp., pertenecientes a las familias Torymidae, Eupelmidae y Eulophidae, la especie más importante pertenece al género Horismenus.  Con el presente estudio se busca establecer las interacciones que L. maya cumple en el agroecosistema de cacao y definir si su presencia guarda relación en el manejo de cultivos orgánicos

    The occurrence of hyponatremia and its importance as a prognostic factor in a cross-section of cancer patients

    Get PDF
    BACKGROUND: Hyponatremia is prognostic of higher mortality in some cancers but has not been well studied in others. We used a longitudinal design to determine the incidence and prognostic importance of euvolemic and hypervolemic hyponatremia in patients following diagnosis with lymphoma, breast (BC), colorectal (CRC), small cell lung (SCLC), or non-small cell lung cancer (NSCLC). METHODS: Medical record and tumor registry data from two large integrated delivery networks were combined for patients diagnosed with lymphoma, BC, CRC, or lung cancers (2002-2010) who had ≥1 administration of radiation/chemotherapy within 6 months of diagnosis and no evidence of hypovolemic hyponatremia. Hyponatremia incidence was measured per 1000 person-years (PY). Cox proportional hazard models assessed the prognostic value of hyponatremia as a time-varying covariate on overall survival (OS) and progression-free survival (PFS). RESULTS: Hyponatremia incidence (%, rate) was 76 % each, 1193 and 2311 per 1000 PY, among NSCLC and SCLC patients, respectively; 37 %, 169 in BC; 64 %, 637 in CRC, and 60 %, 395 in lymphoma. Hyponatremia was negatively associated with OS in BC (HR 3.7; P = \u3c.01), CRC (HR 2.4; P \u3c .01), lung cancer (HR 2.4; P \u3c .01), and lymphoma (HR 4.5; P \u3c .01). Hyponatremia was marginally associated with shorter PFS (HR 1.3, P = .07) across cancer types. CONCLUSIONS: The incidence of hyponatremia is higher than previously reported in lung cancer, is high in lymphoma, BC, and CRC and is a negative prognostic indicator for survival. Hyponatremia incidence in malignancy may be underestimated. The effects of hyponatremia correction on survival in cancer patients require further study

    Enfrentamiento a un tumor de peñazco: estudio y posibilidad diagnóstica

    Full text link

    La urolitiasis y opciones de tratamiento en un país de latinoamérica

    Get PDF
    Letter to the Editor (without abstract)Carta al Editor (sin resumen
    corecore