270 research outputs found

    Copy number variation in African Americans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variants (CNVs) have been identified in several studies to be associated with complex diseases. It is important, therefore, to understand the distribution of CNVs within and among populations. This study is the first report of a CNV map in African Americans.</p> <p>Results</p> <p>Employing a SNP platform with greater than 500,000 SNPs, a first-generation CNV map of the African American genome was generated using DNA from 385 healthy African American individuals, and compared to a sample of 435 healthy White individuals. A total of 1362 CNVs were identified within African Americans, which included two CNV regions that were significantly different in frequency between African Americans and Whites (17q21 and 15q11). In addition, a duplication was identified in 74% of DNAs derived from cell lines that was not present in any of the whole blood derived DNAs.</p> <p>Conclusion</p> <p>The Affymetrix 500 K array provides reliable CNV mapping information. However, using cell lines as a source of DNA may introduce artifacts. The duplication identified in high frequency in Whites and low frequency in African Americans on chromosome 17q21 reflects haplotype specific frequency differences between ancestral groups. The generation of the CNV map will be a valuable tool for identifying disease associated CNVs in African Americans.</p

    The molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse

    Get PDF
    BACKGROUND: The hematopoietic stem cells (HSCs) niche of the bone marrow is comprised of HSCs, osteoblasts, endothelial cells and a stromal component of non-hematopoietic multipotent cells of mesenchymal origin named "mesenchymal stem cells" (MSCs). RESULTS: Here we studied the global transcriptional profile of murine MSCs with immuno-therapeutic potential and compared it with that of 486 publicly available microarray datasets from 12 other mouse tissues or cell types. Principal component analysis and hierarchical clustering identified a unique pattern of gene expression capable of distinctively classifying MSCs from other tissues and cells. We then performed an analysis aimed to identify absolute and relative abundance of transcripts in all cell types. We found that the set of transcripts uniquely expressed by MSCs is enriched in transcription factors and components of the Wnt signaling pathway. The analysis of differentially expressed genes also identified a set of genes specifically involved in the HSC niche and is complemented by functional studies that confirm the findings. Interestingly, some of these genes play a role in the maintenance of HSCs in a quiescent state supporting their survival and preventing them from proliferating and differentiating. We also show that MSCs modulate T cell functions in vitro and, upon in vivo administration, ameliorate experimental autoimmune encephalomyelitis (EAE). CONCLUSION: Altogether, these findings provide novel and important insights on the mechanisms of T cell function regulation by MSCs and help to cement the rationale for their application in the treatment of autoimmune diseases

    SNPs in Multi-Species Conserved Sequences (MCS) as useful markers in association studies: a practical approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although genes play a key role in many complex diseases, the specific genes involved in most complex diseases remain largely unidentified. Their discovery will hinge on the identification of key sequence variants that are conclusively associated with disease. While much attention has been focused on variants in protein-coding DNA, variants in noncoding regions may also play many important roles in complex disease by altering gene regulation. Since the vast majority of noncoding genomic sequence is of unknown function, this increases the challenge of identifying "functional" variants that cause disease. However, evolutionary conservation can be used as a guide to indicate regions of noncoding or coding DNA that are likely to have biological function, and thus may be more likely to harbor SNP variants with functional consequences. To help bias marker selection in favor of such variants, we devised a process that prioritizes annotated SNPs for genotyping studies based on their location within Multi-species Conserved Sequences (MCSs) and used this process to select SNPs in a region of linkage to a complex disease. This allowed us to evaluate the utility of the chosen SNPs for further association studies. Previously, a region of chromosome 1q43 was linked to Multiple Sclerosis (MS) in a genome-wide screen. We chose annotated SNPs in the region based on location within MCSs (termed MCS-SNPs). We then obtained genotypes for 478 MCS-SNPs in 989 individuals from MS families.</p> <p>Results</p> <p>Analysis of our MCS-SNP genotypes from the 1q43 region and comparison to HapMap data confirmed that annotated SNPs in MCS regions are frequently polymorphic and show subtle signatures of selective pressure, consistent with previous reports of genome-wide variation in conserved regions. We also present an online tool that allows MCS data to be directly exported to the UCSC genome browser so that MCS-SNPs can be easily identified within genomic regions of interest.</p> <p>Conclusion</p> <p>Our results showed that MCS can easily be used to prioritize markers for follow-up and candidate gene association studies. We believe that this novel approach demonstrates a paradigm for expediting the search for genes contributing to complex diseases.</p

    Pathway and network-based analysis of genome-wide association studies in multiple sclerosis

    Get PDF
    Genome-wide association studies (GWAS) testing several hundred thousand SNPs have been performed in multiple sclerosis (MS) and other complex diseases. Typically, the number of markers in which the evidence for association exceeds the genome-wide significance threshold is very small, and markers that do not exceed this threshold are generally neglected. Classical statistical analysis of these datasets in MS revealed genes with known immunological functions. However, many of the markers showing modest association may represent false negatives. We hypothesize that certain combinations of genes flagged by these markers can be identified if they belong to a common biological pathway. Here we conduct a pathway-oriented analysis of two GWAS in MS that takes into account all SNPs with nominal evidence of association (P < 0.05). Gene-wise P-values were superimposed on a human protein interaction network and searches were conducted to identify sub-networks containing a higher proportion of genes associated with MS than expected by chance. These sub-networks, and others generated at random as a control, were categorized for membership of biological pathways. GWAS from eight other diseases were analyzed to assess the specificity of the pathways identified. In the MS datasets, we identified sub-networks of genes from several immunological pathways including cell adhesion, communication and signaling. Remarkably, neural pathways, namely axon-guidance and synaptic potentiation, were also over-represented in MS. In addition to the immunological pathways previously identified, we report here for the first time the potential involvement of neural pathways in MS susceptibilit
    corecore