20 research outputs found

    Untersuchung von Magnetostriktiven und Piezotronischen Mikrostrukturen und Materialien für biomagnetische Sensoren mittels Röntgenstrahlen

    Get PDF
    Detecting electric potential differences from the human physiology is an established technique in medical diagnosis, e.g., as electrocardiogram. It arises from a changing electrical polarization of living cells. Simultaneously, biomagnetism is induced and can be utilized for medical examinations, as well. Benefits in using magnetic signals are, no need for direct skin contact and an increased spatial resolution, e.g., for mapping brain activity, especially in combination with electrical examinations. But biomagnetic signals are very weak and, thus, highly sensitive devices are necessary. The development of small and easy to use biomagnetic sensors, with a sufficient sensitivity, is the goal of the Collaborative Research Centre 1261 - Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics. This thesis was written as part of this collaboration, with the main focus on the investigation of crystalline structures and structure related properties of piezotronic and magnetostrictive materials by utilizing a selection of X-ray techniques, i.e., X-ray diffraction (XRD), X-ray reflectivity (XRR) and coherent X-ray diffraction imaging (CXDI). Piezotronics, realized by combining piezoelectricity and Schottky contacts in one structure, provides a promising path to enhance sensor sensitivity. A first study investigated the crystalline structure of three piezotronic ZnO rods, spatially resolved by scanning nano XRD and combined with electrical examinations of their Schottky contact properties. It is found that the crystalline quality has a clear impact on the electrical properties of the related Schottky contact, probably due to crystalline defects. A complementary transmission electron microscopy (TEM) and XRD study performed on hybride vapor phase epitaxy (HVPE) grown GaN showed a slight, photoelectrochemical etching related relaxion of strain originating from crystal growth. In a separate study, CXDI was utilized for three-dimensional visualization of strain in a gold coated ZnO rod, with spatial resolution below 30 nm. A distinct strain distribution was found inside the rod, denoted to depletion and screening effects occurring in bent piezotronic structures, and a high strain at the interface may be related to Schottky contact formation. This interface strain agrees with results obtained from TEM. A succeeding CXDI study was conducted on a ZnO rod coated with magnetostrictive FeCoSiB and the possibility for the investigation of the Schottky contacts electrical properties. It was found that FeCoSiB sputtered on ZnO results in an ohmic contact and that an external magnetic field causes a change of the electrical properties, probably due to a strain change, visualized by CXDI. In a fifth study, magnetostrictive FeCo/TiN multilayer structures were investigated by a combined TEM and XRD/XRR approach, showing a relaxation of the structure due to an annealing process and a cube-on-cube structure of the FeCo and TiN layers

    Modulation of Electrical Conductivity and Lattice Distortions in Burolk HVPE-Gwn GaN

    Get PDF
    The nature of self-organized three-dimensional structured architectures with spatially modulated electrical conductivity emerging in the process of hydride vapor phase epitaxial growth of single crystalline n-GaN wafers is revealed by photoelectrochemical etching. The amplitude of the carrier concentration modulation throughout the sample is derived from photoluminescence analysis and the localized heterogeneous piezoelectric response is demonstrated. The formation of such architectures is rationalized based on the generation of V-shaped pits and their subsequent overgrowth in variable direction. Detailed structure analysis with respect to X-ray diffraction and transmission electron microscopy gives striking evidence for inelastic strain to manifest in distortions of the P63mc wurtzite-type structure. The deviation from hexagonal symmetry by angular distortions of the β angle between the basal plane and c-axis is found to be of around 1°. It is concluded that the lattice distortions are generated by the misfit strains originating during crystal growth, which are slightly relaxed upon photoelectrochemical etching

    Visualizing Intrinsic 3D‐Strain Distribution in Gold Coated ZnO Microstructures by Bragg Coherent X‐Ray Diffraction Imaging and Transmission Electron Microscopy with Respect to Piezotronic Applications

    Get PDF
    Novel devices ranging from bio magnetic field sensors to energy harvesting nano machines utilize the piezotronic effect. For optimal function, understanding the interaction of electrical and strain phenomena within the semiconductor crystal is necessary. Here, studies of a model piezotronic system are presented, consisting of a ZnO microrod coated by a thin layer of gold, which forms a Schottky contact with the piezoelectric ZnO material. Coherent X-ray diffraction imaging (CXDI) and transmission electron microscopy (TEM) are used to visualize the structure and strain distribution, showing that the ZnO microrod exhibits strains of multiple origins in the bulk and at the interface. Strain values of −6 × 104^{-4} have been measured by CXDI at the ZnO/Au interface. The origin is shown to be a combination of an interface strain, possibly caused by the Schottky contact formation, and distinct, localized electrical fields inside the crystal which are assigned to electron depletion and screening in a bent ZnO/Au piezotronic rod. These findings will contribute to sensor development and to a better understanding of piezotronic applications

    Raw Data: Magnetostrictive FeCoSiB coated ZnO Microstructures by Bragg Coherent X-Ray Diffraction Imaging

    No full text
    Five sets of raw data from (Fe90Co10)78Si12B10 coated ZnO microstructure (rod) investigated by Bragg coherent X-ray diffraction imaging. FeCoSiB is a magnetostrictive alloy, thus a changing strain is expected for applied magnetic fields. Included is data from the same spatial positions along the c-axis of the ZnO rod at five different magnetic flux densities [0, 4.4, 5.6, 9.1, 13.2]/mT. Futher on called P1 to P5. For each position there is a .nxs file of a rocking scan around the {0001} Bragg reflection, collected by a 2D detector and other recorded values, e.g. motor positions, counter values

    Role of chemisorbing species in growth at liquid metal-electrolyte interfaces revealed by in situ X-ray scattering

    Get PDF
    Liquid-liquid interfaces offer intriguing possibilities for nanomaterials growth. Here, fundamental interface-related mechanisms that control the growth behavior in these systems are studied for Pb halide formation at the interface between NaX + PbX2_2 (X = F, Cl, Br) and liquid Hg electrodes using in situ X-ray scattering and complementary electrochemical and microscopy measurements. These studies reveal a decisive role of the halide species in nucleation and growth of these compounds. In Cl- and Br-containing solution, deposition starts by rapid formation of well-defined ultrathin (∼7 Å) precursor adlayers, which provide a structural template for the subsequent quasi-epitaxial growth of c-axis oriented Pb(OH)X bulk crystals. In contrast, growth in F-containing solution proceeds by slow formation of a more disordered deposit, resulting in random bulk crystal orientations on the Hg surface. These differences can be assigned to the interface chemistry, specifically halide chemisorption, which steers the formation of these highly textured deposits at the liquid-liquid interface

    Local Strain Distribution in ZnO Microstructures Visualized with Scanning Nano X‐Ray Diffraction and Impact on Electrical Properties

    No full text
    The fast and contact-free detection of biomagnetic vital signs can benefit clinical diagnostics in medical care, emergency services, and scientific studies, hugely. A highly sensitive magnetoelectric sensor for the detection of biomagnetic signals combined with the piezotronic effect is a promising path to increase the signal detection limit. Herein, the results of three ZnO microrods examined by nano X-ray diffraction and current–voltage curves to investigate the crystalline structure influence on the Schottky contact properties are presented. The measurements reveal different strain distributions for the three rods and that these are linked with the electrical properties, showing that the crystalline quality has a direct influence on the Schottky contact properties. An analytical model is created to determine the influence of the stress. Although rotation of the strain orientation changes the strain appearance in the measurement, it does not affect the Schottky contact properties
    corecore