208 research outputs found
(3β,18β,20β)-N-Ethoxycarbonylmethyl-3-nitrato-11-oxoolean-12-ene-29-carboxamide methanol monosolvate
The title compound, C34H52N2O7·CH4O, is the methanol solvate of a difunctionalized derivative of the therapeutic agent 18β-glycyrrhetinic acid, a pentacyclic triterpene. The five six-membered rings of the glycyrrhetinic acid moiety show normal geometries, with four rings in chair conformations and the unsaturated ring in a half-chair conformation. This moiety is substituted by a nitrate ester group and an O-ethylglycine group. In the crystal, the nonsolvent molecules are packed parallel to (010) in a herringbone fashion with the nitrato, ethylglycine and methanol-O atom being proximate. The methanol solvent molecule is anchored via a donated O—H⋯Oacyl and an accepted N—H⋯O hydrogen bond, giving rise to infinite zigzag chains of hydrogen bonds parallel to [100]. Two weak intermolecular C—H⋯O interactions to the methanol and to an acyl oxygen establish links along [100] and [010], respectively
The Literariness of Media Art
“Language can be this incredibly forceful material—there’s something about it where if you can
strip away its history, get to the materiality of it, it can rip into you like claws” (Hill in Vischer
1995, 11). This arresting image by media artist Gary Hill evokes the nearly physical force of
language to hold recipients in its grip. That power seems to lie in the material of language itself,
which, with a certain rawness, may captivate or touch, pounce on, or even harm its addressee.
Hill’s choice of words is revealing: ‘rip into’ suggests not only a metaphorical emotional pull but
also the literal physicality of linguistic attack. It is no coincidence that the statement comes from
a media artist, since media artworks often use language to produce a strong sensorial stimulus.
Media artworks not only manipulate language as a material in itself, but they also manipulate the
viewer’s perceptual channels. The guises and effects of language as artistic material are the topic
of this book, The Literariness of Media Art
Is it feasible to estimate radiosonde biases from interlaced measurements?
Upper-air measurements of essential climate variables (ECVs), such as temperature, are crucial for climate monitoring and climate change detection. Because of the internal variability of the climate system, many decades of measurements are typically required to robustly detect any trend in the climate data record. It is imperative for the records to be temporally homogeneous over many decades to confidently estimate any trend. Historically, records of upper-air measurements were primarily made for short-term weather forecasts and as such are seldom suitable for studying long-term climate change as they lack the required continuity and homogeneity. Recognizing this, the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) has been established to provide reference-quality measurements of climate variables, such as temperature, pressure, and humidity, together with well-characterized and traceable estimates of the measurement uncertainty. To ensure that GRUAN data products are suitable to detect climate change, a scientifically robust instrument replacement strategy must always be adopted whenever there is a change in instrumentation. By fully characterizing any systematic differences between the old and new measurement system a temporally homogeneous data series can be created. One strategy is to operate both the old and new instruments in tandem for some overlap period to characterize any inter-instrument biases. However, this strategy can be prohibitively expensive at measurement sites operated by national weather services or research institutes. An alternative strategy that has been proposed is to alternate between the old and new instruments, so-called interlacing, and then statistically derive the systematic biases between the two instruments. Here we investigate the feasibility of such an approach specifically for radiosondes, i.e. flying the old and new instruments on alternating days. Synthetic data sets are used to explore the applicability of this statistical approach to radiosonde change management
Die Attribution von meteorologischen Extremereignissen beim Deutschen Wetterdienst
Vorhersage und ProjektionDie Anreicherung von klimawirksamen Gasen in der Atmosphäre führt zu einem verstärkten Treibhauseffekt. Dadurch ändern sich weltweit die klimatischen Verhältnisse. Damit verbunden ändern sich auch die Charakteristiken von meteorologischen Extremereignissen wie zum Beispiel Hitzewellen und Extremniederschlägen. Immer häufiger wird nach einem Extremereignis gefragt, inwiefern der Klimawandel dieses Ereignis beeinflusst hat. Das Forschungsfeld der Extremwetterattribution befasst sich mit dieser Fragestellung. Durch die Analyse von Klimamodellsimulationen kann zum Beispiel untersucht werden, wie sich die Häufigkeit einer bestimmten Klasse an Extremereignissen durch den Anstieg der Treibhausgase verändert hat.
Diese Präsentation wird einen generellen Überblick über die verschiedenen Ansätze zur Attribution von Extremwetterereignissen geben und die beim Deutschen Wetterdienst (DWD) laufenden Forschungsprojekte vorstellen. Die Öffentlichkeit hat ein Interesse daran, Informationen über den Einfluss des menschgemachten Klimawandels auf bestimmte Extremereignisse bereits kurz nach dem Ereignis zu erhalten. Daher arbeitet der DWD in verschiedenen Forschungsprojekten darauf hin, die Attributionsanalyse so weit wie möglich zu operationalisieren, um die Ergebnisse innerhalb kürzester Zeit nach einem Extremereignis zur Verfügung zu stellen
Combining data from the distributed GRUAN site Lauder-Invercargill, New Zealand, to provide a site atmospheric state best estimate of temperature
A site atmospheric state best estimate (SASBE) of the temperature profile above the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) site at Lauder, New Zealand, has been developed. Data from multiple sources are combined within the SASBE to generate a high temporal resolution data set that includes an estimate of the uncertainty on every value.
The SASBE has been developed to enhance the value of measurements made at the distributed GRUAN site at Lauder and Invercargill (about 180km apart), and to demonstrate a methodology which can be adapted to other distributed sites. Within GRUAN, a distributed site consists of a cluster of instruments at different locations.
The temperature SASBE combines measurements from radiosondes and automatic weather stations at Lauder and Invercargill, and ERA5 reanalysis, which is used to calculate a diurnal temperature cycle to which the SASBE converges in the absence of any measurements.
The SASBE provides hourly temperature profiles at 16 pressure levels between the surface and 10hPa for the years 1997 to 2012. Every temperature value has an associated uncertainty which is calculated by propagating the measurement uncertainties, the ERA5 ensemble standard deviations, and the ERA5 representativeness uncertainty through the retrieval chain. The SASBE has been long-term archived and is identified using the digital object identifier https://doi.org/10.5281/zenodo.1195779.
The study demonstrates a method to combine data collected at distributed sites. The resulting best-estimate temperature data product for Lauder is expected to be valuable for satellite and model validation as measurements of atmospheric essential climate variables are sparse in the Southern Hemisphere. The SASBE could, for example, be used to constrain a radiative transfer model to provide top-of-the-atmosphere radiances with traceable uncertainty estimates
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
The tropical western Pacific is recognized as an important region for stratosphere-troposphere exchange but lies in a data-sparse location that had a measurement gap in the global ozone sounding network. The Palau Atmospheric Observatory (PAO, approx. 7.3 N, 134.5 E) was established to study the atmospheric composition above the remote tropical western Pacific with a comprehensive instrumental setup. Since 2016, two laboratory containers in Palau host a Fourier transform infrared spectrometer; a lidar (micro-lidar until 2016, cloud and aerosol lidar from 2018); a Pandora 2S photometer; and laboratory space for weather balloon soundings with ozone, water vapor, aerosol, and radiosondes. In this analysis, we focus on the continuous, fortnightly ozone sounding program with electrochemical concentration cell (ECC) ozonesondes. The aim of this study is to introduce the PAO and its research potential, present the first observation of the typical seasonal cycle of tropospheric ozone in the tropical western Pacific based on a multiannual record of in situ observations, and investigate major drivers of variability and seasonal variation from January 2016 until December 2021 related to the large-scale atmospheric circulation. We present the PAO ozone (O3) volume mixing ratios (VMR) and relative humidity (RH) time series complemented by other observations. The site is exposed to year-round high convective activity reflected in dominating low O3 VMR and high RH. In 2016, the impact of the strong El Niño is evident as a particularly dry, ozone-rich episode. The main modulator of annual tropospheric O3 variability is identified as the movement of the Intertropical Convergence Zone (ITCZ), with the lowest O3 VMR in the free troposphere during the ITCZ position north of Palau. An analysis of the relation of O3 and RH for the PAO and selected sites from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network reveals three different regimes. Palau's O3/RH distribution resembles the one in Fiji, Java and American Samoa but is unique in its seasonality and its comparably narrow Gaussian distribution around low O3 VMR and the evenly distributed RH. A previously found bimodal distribution of O3 VMR and RH could not be seen for the full Palau record but only during specific seasons and years. Due to its unique remote location, Palau is an ideal atmospheric background site to detect changes in air dynamics imprinted on the chemical composition of the tropospheric column. The efforts to establish, run and maintain the PAO have succeeded to fill an observational gap in the remote tropical western Pacific and give good prospects for ongoing operations. The ECC sonde record will be integrated into the SHADOZ database in the near future
(+)-Methyl 3β-acetoxy-13-carboxy-19-hydroxy-11-oxo-C-norolean-18-en-30-oate γ-lactone
The title compound, C33H46O7, is an unusual oxydation product of the therapeutic agent glycyrrhetinic acid that has, in comparison to the latter, a distinctly altered triterpene structure with one five- and four six-membered carbocycles complemented by a γ-lactone ring with a spiro-junction and a ring double bond. The junction between the five-membered ring C, a cyclopentanone ring, and the six-membered ring D, previously in question, was found to be cis, confirming earlier structure assignments based solely on chemical transformations. In the solid state, the compound exhibits five intra- and four intermolecular C—H⋯O interactions with H⋯O distances less than or equal to 2.70 Å and C—H⋯O greater than 100°
Propargylaminyl 3α-hydroxy-11-oxo-18β-olean-12-en-29-oate
The title compound, C33H49NO3, is the propargylamide of 18β-glycyrrhetinic acid, a pentacyclic triterpenoid of interest as a therapeutic agent. The five six-membered rings of the glycyrrhetinic acid moiety show normal geometries, with four rings in chair conformations and the unsaturated ring C in a half-chair conformation. In the crystal, the terminal N-propargylcarboxamide group has remarkable structural effects on weak hydrogen-bond-like interactions. Particularly noteworthy are an intermolecular O—H⋯π interaction accepted side-on by the terminal alkyne group [O⋯C = 3.097 (2) and 3.356 (2) Å] and a short intermolecular C—H⋯O interaction [C⋯O = 3.115 (2) Å] donated by the alkyne C—H group. An N—H⋯O [N⋯O = 3.251 (2) Å] and a Calkyl—H⋯O [C⋯O = 3.254 (2) Å] interaction complement the crystal structure
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Extreme precipitation is a weather phenomenon with tremendous damaging potential for property and human life. As the intensity and frequency of such events is projected to increase in a warming climate, there is an urgent need to advance the existing knowledge on extreme precipitation processes, statistics and impacts across scales. To this end, a working group within the Germany-based project, ClimXtreme, has been established to carry out multidisciplinary analyses of high-impact events. In this work, we provide a comprehensive assessment of the 29 June 2017 heavy precipitation event (HPE) affecting the Berlin metropolitan region (Germany), from the meteorological, impacts and climate perspectives, including climate change attribution. Our analysis showed that this event occurred under the influence of a mid-tropospheric trough over western Europe and two shortwave surface lows over Britain and Poland (Rasmund and Rasmund II), inducing relevant low-level wind convergence along the German–Polish border. Over 11 000 convective cells were triggered, starting early morning 29 June, displacing northwards slowly under the influence of a weak tropospheric flow (10 m s at 500 hPa). The quasi-stationary situation led to totals up to 196 mm d, making this event the 29 June most severe in the 1951–2021 climatology, ranked by means of a precipitation-based index. Regarding impacts, it incurred the largest insured losses in the period 2002 to 2017 (EUR 60 million) in the greater Berlin area. We provide further insights on flood attributes (inundation, depth, duration) based on a unique household-level survey data set. The major moisture source for this event was the Alpine–Slovenian region (63 % of identified sources) due to recycling of precipitation falling over that region 1 d earlier. Implementing three different generalised extreme value (GEV) models, we quantified the return periods for this case to be above 100 years for daily aggregated precipitation, and up to 100 and 10 years for 8 and 1 h aggregations, respectively. The conditional attribution demonstrated that warming since the pre-industrial era caused a small but significant increase of 4 % in total precipitation and 10 % for extreme intensities. The possibility that not just greenhouse-gas-induced warming, but also anthropogenic aerosols affected the intensity of precipitation is investigated through aerosol sensitivity experiments. Our multi-disciplinary approach allowed us to relate interconnected aspects of extreme precipitation. For instance, the link between the unique meteorological conditions of this case and its very large return periods, or the extent to which it is attributable to already-observed anthropogenic climate change
- …