51 research outputs found

    Crystal Structure of the PP2A Phosphatase Activator: Implications for Its PP2A-Specific PPIase Activity

    Get PDF
    PTPA, an essential and specific activator of protein phosphatase 2A (PP2A), functions as a peptidyl prolyl isomerase (PPIase). We present here the crystal structures of human PTPA and of the two yeast orthologs (Ypa1 and Ypa2), revealing an all α-helical protein fold that is radically different from other PPIases. The protein is organized into two domains separated by a groove lined by highly conserved residues. To understand the molecular mechanism of PTPA activity, Ypa1 was cocrystallized with a proline-containing PPIase peptide substrate. In the complex, the peptide binds at the interface of a peptide-induced dimer interface. Conserved residues of the interdomain groove contribute to the peptide binding site and dimer interface. Structure-guided mutational studies showed that in vivo PTPA activity is influenced by mutations on the surface of the peptide binding pocket, the same mutations that also influenced the in vitro activation of PP2Ai and PPIase activity

    Treatment failure and hospital readmissions in severe COPD exacerbations treated with azithromycin versus placebo - A post-hoc analysis of the BACE randomized controlled trial

    Get PDF
    Background: In the BACE trial, a 3-month (3 m) intervention with azithromycin, initiated at the onset of an infectious COPD exacerbation requiring hospitalization, decreased the rate of a first treatment failure (TF); the composite of treatment intensification (TI), step-up in hospital care (SH) and mortality. Objectives: (1) To investigate the intervention's effect on recurrent events, and (2) to identify clinical subgroups most likely to benefit, determined from the incidence rate of TF and hospital readmissions. Methods: Enrolment criteria included the diagnosis of COPD, a smoking history of ≥10 pack-years and ≥ 1 exacerbation in the previous year. Rate ratio (RR) calculations, subgroup analyses and modelling of continuous variables using splines were based on a Poisson regression model, adjusted for exposure time. Results: Azithromycin significantly reduced TF by 24% within 3 m (RR = 0.76, 95%CI:0.59;0.97, p = 0.031) through a 50% reduction in SH (RR = 0.50, 95%CI:0.30;0.81, p = 0.006), which comprised of a 53% reduction in hospital readmissions (RR = 0.47, 95%CI:0.27;0.80; p = 0.007). A significant interaction between the intervention, CRP and blood eosinophil count at hospital admission was found, with azithromycin significantly reducing hospital readmissions in patients with high CRP (> 50 mg/L, RR = 0.18, 95%CI:0.05;0.60, p = 0.005), or low blood eosinophil count (<300cells/μL, RR = 0.33, 95%CI:0.17;0.64, p = 0.001). No differences were observed in treatment response by age, FEV1, CRP or blood eosinophil count in continuous analyses. Conclusions: This post-hoc analysis of the BACE trial shows that azithromycin initiated at the onset of an infectious COPD exacerbation requiring hospitalization reduces the incidence rate of TF within 3 m by preventing hospital readmissions. In patients with high CRP or low blood eosinophil count at admission this treatment effect was more pronounced, suggesting a potential role for these biomarkers in guiding azithromycin therapy. Trial registration: ClinicalTrials.gov number. NCT02135354. © 2019 The Author(s)

    Investigation of Design Parameters in Ultrasound Reactors

    No full text
    The cavitational activity of a tubular sonoreactor was simulated and related to the chemical reaction rate in order to study the effect of different design parameters. The conversion was improved with a factor 10 by optimization of the reactor diameter. Further improvement of the conversion with 20% was achieved by shifting the transducers apart. When the reactor diameter is in the millimeter scale, stainless steel and borosilicate glass walls very well resemble sound-hard walls. The impact on the total conversion can, however, be significant when increasing the diameters to a decimeter scale. A 10% lower conversion was observed with glass walls compared to sound-hard boundaries.status: publishe

    Analytical Methods for PFAS in Products and the Environment

    No full text
    Per- and polyfluoroalkyl substances (PFASs) are a large group of substances that have been widely used in articles since many years. They are found wherever extreme conditions prevail and particularly high demands are placed on materials. Their use spans over many different sectors ranging from fire-fighting foams to the manufacture of everyday articles like water-repellent outdoor jackets or stain-proofing agents.On the other side, PFASs are not easily degradable and can remain in the environment for decades. In addition, the use of PFASs has raised human and environmental concerns. In Europe, some PFASs are therefore classified as persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) under the REACH Regulation. The following report provides an overview of currently available analytical methods for PFASs in different matrices.

    Adduct ion formation as a tool for the molecular structure assessment of ten isomers in traveling wave and trapped ion mobility spectrometry

    No full text
    Rationale The separation of isomeric compounds with major differences in their physiochemical and pharmacokinetic properties is of particular importance in pharmaceutical R&D. However, the structural assessment and separation of these compounds with current analytical techniques and methods are still a challenge. In this study, we describe strategies to separate the various structural and stereo-isomers. Methods The separation of ten structural and stereo-isomers was investigated using Trapped and Travelling Wave ion mobility spectrometry (TIMS and TWIMS). Different strategies including adduct ion formation with Na, Li, Ag and Cs as well as fragmentation before and after the ion mobility cell were applied to separate the isomeric compounds. Results All the counter ions (in particular Na) strongly coordinated with the test analytes in all the IMS systems. The highest resolving power was achieved for the sodium and lithium adducts using TIMS-time-of-flight (TOF). However, some separation was attained on a Synapt HDMS system with its unique potential to monitor the ion mobility of the product ions. The elution order of the adduct ions was the same in all instruments, in which, unexpectedly, the para-substituted isomer of the [M + Na](+) species had the lowest collision cross section followed by the meta- and ortho-isomers. Conclusions The formation of adduct ions could facilitate the separation of structural and even stereo-isomers by generating different molecular conformations. In addition, fragmenting isomers before or after the ion mobility cell is a valuable strategy to separate and also to assess the structures of adducts and different conformers

    Adduct-ion formation in trapped ion mobility spectrometry as a potential tool for studying molecular structures and conformations

    No full text
    Recent developments in the field of ion mobility spectrometry provide new possibilities to explore and understand gas-phase ion chemistry. In this study, hyphenated trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) was applied to investigate analyte ion mobility as function of adduct ion formation for twelve pharmaceutically relevant molecules, and for tetrahydrocannabinol (THC) and its isomer cannabidiol (CBD). Samples were introduced by direct infusion and ions were generated with positive electrospray ionization (ESI+) observing protonated and sodiated ions. Measurements were performed with and without addition of cesium-, lithium-, silver- and sodium ions to the samples. For the tested compounds, metal adduct ions with the same m/z but with different mobility and collision cross section (CCSs) were observed, indicating different molecular conformations. Formation of analyte dimers was also observed, which could be associated with molecular geometry of the compounds. By optimizing the range and speed of the electric field gradient and ramp, respectively, the separation of THC and CBD was achieved by employing the adduct formation. This study demonstrates that the favorable resolution of TIMS combined with the ability to detect weakly bound counter ions is a valuable means for rapid detection, separation and structural assignment of molecular isomers and analyte conformations
    • …
    corecore