3,298 research outputs found

    Cognitive Roles of Anterior and Posterior Pedunculopontine Tegmentum Subregions

    Get PDF
    The pedunculopontine tegmentum (PPT) is part of the mesopontine cholinergic system with distinct anterior and posterior subdivisions. With fast sensory input and descending connections to brainstem locomotor centers, we predict posterior PPT (pPPT) mediates prepulse inhibition of acoustic startle reflex, a form of sensorimotor gating that affects attentional processes. Similar to pPPT cholinergic projections to ventral tegmental area, we predict anterior PPT cholinergic input to substantia nigra regulates dopamine release in striatum, which is important for reinforcement learning. We lesioned the PPT bilaterally in male Sprague Dawley rats with ibotenic acid. Posterior cholinergic cell loss was significantly correlated with prepulse inhibition scores, consistent with our predictions for pPPT mediation of PPI. Anterior cholinergic cell loss was not correlated with performance in cued version of Morris water maze task, though lesions were likely insufficient. These results contribute to investigation of anterior vs. posterior PPT contribution to higher cognitive function

    Multidimensional scaling reveals a color dimension unique to 'color-deficient' observers

    Get PDF
    Normal color vision depends on the relative rates at which photons are absorbed in three types of retinal cone:short-wave (S), middle-wave (M) and long-wave (L) cones, maximally sensitive near 430, 530 and 560nm, respectively. But 6% of men exhibit an X-linked variant form of color vision called deuteranomaly [1]. Their color vision is thought to depend on S cones and two forms of long-wave cone (L, L′) [2,3]. The two types of L cone contain photopigments that are maximally sensitive near 560nm, but their spectral sensitivities are different enough that the ratio of their activations gives a useful chromatic signal

    Path Clearance for Emergency Vehicles Through the Use of Vehicle-to-Vehicle Communication

    Get PDF
    The study described in this paper evaluated and tested a new strategy to enable emergency response vehicles (EVs) to navigate through congestion at signalized intersections more efficiently. The proposed strategy involves the use of vehicle-to-vehicle communication to send messages to alert vehicles to the approach of the EV and to provide specific instructions on maneuvering to allow the EV to proceed through congested signalized intersections as quickly as possible. This movement is achieved by creation of a split in the vehicle queue in one lane at a critical location to allow the EV to proceed at its desired speed but minimize the disruption to the rest of the traffic. The proposed method uses kinematic wave theory (i.e., shock wave theory) to determine the critical point in the vehicle queue. The proposed method is simulated in a microscopic traffic simulator for evaluation. The results show that this strategy can significantly shorten the travel time for EVs through congested signalized intersections

    Adult life stage and crisis as predictors of curiosity and authenticity: Testing inferences from Eriksons lifespan theory

    Get PDF
    During periods of developmental crisis, individuals experience uncomfortable internal incongruence and are motivated to reduce this through forms of exploration of self, other and world. From this, we inferred that crisis would relate positively to curiosity and negatively to a felt sense of authenticity. A quasi-experimental design using self-report data from a nationally representative UK sample (N = 963) of adults in early life (20-39 yrs.), midlife (40-59 yrs.) and later-life (60+) showed a pattern of findings supportive of the hypotheses. Three forms of curiosity (intrapersonal, perceptual and epistemic D-type) were significantly higher, while authenticity was lower, among those currently in crisis that those of the same age group not in crisis. Crisis was also related to curiosity about particular book genres; early adult crisis to self-help and spirituality, midlife to self-help and biography, and later life to food and eating

    Intrapersonal curiosity: Inquisitiveness about the inner self

    Get PDF
    Intrapersonal Curiosity (InC) is the desire to learn more about one’s inner-self. A pool of 39 experimental InC items were administered to 988 participants (498 women), along with other measures of curiosity and personality. Three InC factors with acceptable model fit were identified, from which three internally consistent (alphas > .89) 4-item subscales were developed: “Understanding Emotions and Motives”, “Reflecting on the Past”, and “Exploring Identity and Purpose”. The InC scales correlated positively with other curiosity measures, evidencing convergent validity; divergent validity was demonstrated on the basis of weak relations to other constructs. The InC scales were positively associated with less self-awareness, poorer self-regulation, and experiences of distress, suggesting that InC tends to be higher in individuals who lack, but seek, new intrapersonal knowledge to reduce uncertainty about the self

    The orientation-preserving diffeomorphism group of S^2 deforms to SO(3) smoothly

    Full text link
    Smale proved that the orientation-preserving diffeomorphism group of S^2 has a continuous strong deformation retraction to SO(3). In this paper, we construct such a strong deformation retraction which is diffeologically smooth.Comment: 16 page

    Time-resolved optical spectroscopy of the pulsating DA white dwarf HS 0507+0434B: New constraints on mode identification and pulsation properties

    Get PDF
    We present a detailed analysis of time-resolved optical spectra of the ZZ Ceti white dwarf, HS 0507+0434B. Using the wavelength dependence of observed mode amplitudes, we deduce the spherical degree, l, of the modes, most of which have l=1. The presence of a large number of combination frequencies (linear sums or differences of the real modes) enabled us not only to test theoretical predictions but also to indirectly infer spherical and azimuthal degrees of real modes that had no observed splittings. In addition to the above, we measure line-of-sight velocities from our spectra. We find only marginal evidence for periodic modulation associated with the pulsation modes: at the frequency of the strongest mode in the lightcurve, we measure an amplitude of 2.6+/-1.0 km/s, which has a probability of 2% of being due to chance; for the other modes, we find lower values. Our velocity amplitudes and upper limits are smaller by a factor of two compared to the amplitudes found in ZZ Psc. We find that this is consistent with expectations based on the position of HS 0507+0434B in the instability strip. Combining all the available information from data such as ours is a first step towards constraining atmospheric properties in a convectionally unstable environment from an observational perspective.Comment: 16 pages, 12 figs.; accepted for publication in A&

    Integrating a Simple Traffic Incident Model for Rapid Evacuation Analysis

    Get PDF
    Road transportation networks are a segment of society\u27s critical infrastructure particularly susceptible to service disruptions. Traffic incidents disrupt road networks by producing blockages and increasing travel times, creating significant impacts during emergency events such as evacuations. For this reason, it is extremely important to incorporate traffic incidents in evacuation planning models. Emergency managers and decision makers need tools that enable rapid assessment of multiple, varied scenarios. Many evacuation simulations require high-fidelity data input making them impractical for rapid deployment by practitioners. Since there is such variation in evacuation types and the method of disruption, evacuation models do not require the high-fidelity data needed by other types of transportation models. This paper\u27s purpose is to show that decision makers can gain useful information from rapid evacuation modeling which includes a simple traffic incident model. To achieve this purpose, the research team integrated a generic incident model into the Real-time Evacuation Planning Model (RtePM), a tool commissioned by the U.S. Department of Homeland Security to help emergency planners determine regional evacuation clearance times in the United States. RtePM is a simple, web-based tool that enables emergency planners to consider multiple evacuation plans at no additional cost to the user. Using this tool, we analyzed a simple scenario of the United States\u27 National Capital Region (NCR) to determine the impact of traffic incidents when different destination routes are blocked. The results indicate significant variations in evacuation duration when blockages are considered

    Generic Incident Model for Investigating Traffic Incident Impacts on Evacuation Times in Large-Scale Emergencies

    Get PDF
    Traffic incidents cause a ripple effect of reduced travel speeds, lane changes, and the pursuit of alternative routes that results in gridlock on the immediately affected and surrounding roadways. The disruptions caused by the secondary effects significantly degrade travel time reliability, which is of great concern to the emergency planners who manage evacuations. Outcomes forecast by a generic incident model embedded in a microscopic evacuation simulation, the Real-Time Evacuation Planning Model (RtePM), were examined to quantify the change in time required for an emergency evacuation that results from traffic incidents. The incident model considered vehicle miles traveled on each individual segment of the studied road network model. The two scenarios considered for this investigation were evacuations of (a) Washington, D.C., after a simulated terrorist attack and (b) Virginia Beach, Virginia, in response to a simulated hurricane. These results could help the emergency planning community understand and investigate the impact of traffic incidents during an evacuation

    Transport in one dimensional Coulomb gases: From ion channels to nanopores

    Full text link
    We consider a class of systems where, due to the large mismatch of dielectric constants, the Coulomb interaction is approximately one-dimensional. Examples include ion channels in lipid membranes and water filled nanopores in silicon or cellulose acetate films. Charge transport across such systems possesses the activation behavior associated with the large electrostatic self-energy of a charge placed inside the channel. We show here that the activation barrier exhibits non-trivial dependence on the salt concentration in the surrounding water solution and on the length and radius of the channel.Comment: New references are have been added and discussed. 18 pages, 8 figure
    • …
    corecore