41,422 research outputs found
Linking pattern to process in cultural evolution: explaining material culture diversity among the Northern Khanty of Northwest Siberia
Book description: This volume offers an integrative approach to the application of evolutionary theory in studies of cultural transmission and social evolution and reveals the enormous range of ways in which Darwinian ideas can lead to productive empirical research, the touchstone of any worthwhile theoretical perspective. While many recent works on cultural evolution adopt a specific theoretical framework, such as dual inheritance theory or human behavioral ecology, Pattern and Process in Cultural Evolution emphasizes empirical analysis and includes authors who employ a range of backgrounds and methods to address aspects of culture from an evolutionary perspective. Editor Stephen Shennan has assembled archaeologists, evolutionary theorists, and ethnographers, whose essays cover a broad range of time periods, localities, cultural groups, and artifacts
Adiabatic optimization without local minima
Several previous works have investigated the circumstances under which
quantum adiabatic optimization algorithms can tunnel out of local energy minima
that trap simulated annealing or other classical local search algorithms. Here
we investigate the even more basic question of whether adiabatic optimization
algorithms always succeed in polynomial time for trivial optimization problems
in which there are no local energy minima other than the global minimum.
Surprisingly, we find a counterexample in which the potential is a single basin
on a graph, but the eigenvalue gap is exponentially small as a function of the
number of vertices. In this counterexample, the ground state wavefunction
consists of two "lobes" separated by a region of exponentially small amplitude.
Conversely, we prove if the ground state wavefunction is single-peaked then the
eigenvalue gap scales at worst as one over the square of the number of
vertices.Comment: 20 pages, 1 figure. Journal versio
Estimating Jones and HOMFLY polynomials with One Clean Qubit
The Jones and HOMFLY polynomials are link invariants with close connections
to quantum computing. It was recently shown that finding a certain
approximation to the Jones polynomial of the trace closure of a braid at the
fifth root of unity is a complete problem for the one clean qubit complexity
class. This is the class of problems solvable in polynomial time on a quantum
computer acting on an initial state in which one qubit is pure and the rest are
maximally mixed. Here we generalize this result by showing that one clean qubit
computers can efficiently approximate the Jones and single-variable HOMFLY
polynomials of the trace closure of a braid at any root of unity.Comment: 22 pages, 11 figures, revised in response to referee comment
Aspects of a supersymmetric Brans-Dicke theory
We consider a locally supersymmetric theory where the Planck mass is replaced
by a dynamical superfield. This model can be thought of as the Minimal
Supersymmetric extension of the Brans-Dicke theory (MSBD). The motivation that
underlies this analysis is the research of possible connections between Dark
Energy models based on Brans-Dicke-like theories and supersymmetric Dark Matter
scenarios. We find that the phenomenology associated with the MSBD model is
very different compared to the one of the original Brans-Dicke theory: the
gravitational sector does not couple to the matter sector in a universal metric
way. This feature could make the minimal supersymmetric extension of the BD
idea phenomenologically inconsistent.Comment: 6 pages, one section is adde
Biaxial constitutive equation development
In developing the constitutive equations an interdisciplinary approach is being pursued. Specifically, both metallurgical and continuum mechanics considerations are recognized in the formulation. Experiments will be utilized to both explore general qualitative features of the material behavior that needs to be modeled and to provide a means of assessing the validity of the equations being developed. The model under development explicitly recognizes crystallographic slip on the individual slip systems. This makes possible direct representation of specific slip system phenomena. The present constitutive formulation takes the anisotropic creep theory and incorporates two state variables into the model to account for the effect of prior inelastic deformation history on the current rate-dependent response of the material
(Never) Mind your p's and q's: Von Neumann versus Jordan on the Foundations of Quantum Theory
In two papers entitled "On a new foundation [Neue Begr\"undung] of quantum
mechanics," Pascual Jordan (1927b,g) presented his version of what came to be
known as the Dirac-Jordan statistical transformation theory. As an alternative
that avoids the mathematical difficulties facing the approach of Jordan and
Paul A. M. Dirac (1927), John von Neumann (1927a) developed the modern Hilbert
space formalism of quantum mechanics. In this paper, we focus on Jordan and von
Neumann. Central to the formalisms of both are expressions for conditional
probabilities of finding some value for one quantity given the value of
another. Beyond that Jordan and von Neumann had very different views about the
appropriate formulation of problems in quantum mechanics. For Jordan, unable to
let go of the analogy to classical mechanics, the solution of such problems
required the identication of sets of canonically conjugate variables, i.e., p's
and q's. For von Neumann, not constrained by the analogy to classical
mechanics, it required only the identication of a maximal set of commuting
operators with simultaneous eigenstates. He had no need for p's and q's. Jordan
and von Neumann also stated the characteristic new rules for probabilities in
quantum mechanics somewhat differently. Jordan (1927b) was the first to state
those rules in full generality. Von Neumann (1927a) rephrased them and, in a
subsequent paper (von Neumann, 1927b), sought to derive them from more basic
considerations. In this paper we reconstruct the central arguments of these
1927 papers by Jordan and von Neumann and of a paper on Jordan's approach by
Hilbert, von Neumann, and Nordheim (1928). We highlight those elements in these
papers that bring out the gradual loosening of the ties between the new quantum
formalism and classical mechanics.Comment: New version. The main difference with the old version is that the
introduction has been rewritten. Sec. 1 (pp. 2-12) in the old version has
been replaced by Secs. 1.1-1.4 (pp. 2-31) in the new version. The paper has
been accepted for publication in European Physical Journal
- …
