19 research outputs found

    Critical Kauffman networks under deterministic asynchronous update

    Full text link
    We investigate the influence of a deterministic but non-synchronous update on Random Boolean Networks, with a focus on critical networks. Knowing that ``relevant components'' determine the number and length of attractors, we focus on such relevant components and calculate how the length and number of attractors on these components are modified by delays at one or more nodes. The main findings are that attractors decrease in number when there are more delays, and that periods may become very long when delays are not integer multiples of the basic update step.Comment: 8 pages, 3 figures, submitted to a journa

    Reliability of Serum Metabolite Concentrations over a 4-Month Period Using a Targeted Metabolomic Approach

    Get PDF
    Metabolomics is a promising tool for discovery of novel biomarkers of chronic disease risk in prospective epidemiologic studies. We investigated the between- and within-person variation of the concentrations of 163 serum metabolites over a period of 4 months to evaluate the metabolite reliability expressed by the intraclass-correlation coefficient (ICC: the ratio of between-person variance and total variance). The analyses were performed with the BIOCRATES AbsoluteIDQ™ targeted metabolomics technology, including acylcarnitines, amino acids, glycerophospholipids, sphingolipids and hexose in 100 healthy individuals from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study who had provided two fasting blood samples 4 months apart. Overall, serum reliability of metabolites over a 4-month period was good. The median ICC of the 163 metabolites was 0.57. The highest ICC was observed for hydroxysphingomyelin C14:1 (ICC = 0.85) and the lowest was found for acylcarnitine C3:1 (ICC = 0). Reliability was high for hexose (ICC = 0.76), sphingolipids (median ICC = 0.66; range: 0.24–0.85), amino acids (median ICC = 0.58; range: 0.41–0.72) and glycerophospholipids (median ICC = 0.58; range: 0.03–0.81). Among acylcarnitines, reliability of short and medium chain saturated compounds was good to excellent (ICC range: 0.50–0.81). Serum reliability was lower for most hydroxyacylcarnitines and monounsaturated acylcarnitines (ICC range: 0.11–0.45 and 0.00–0.63, respectively). For most of the metabolites a single measurement may be sufficient for risk assessment in epidemiologic studies with healthy subjects

    Real-Time Visual Prosody for Interactive Virtual Agents

    No full text
    van Welbergen H, Ding Y, Sattler K, Pelachaud C, Kopp S. Real-Time Visual Prosody for Interactive Virtual Agents. In: Brinkman W-P, Broekens J, Heylen D, eds. Intelligent Virtual Agents. Lecture Notes in Computer Science. Vol 9238. Cham: Springer International Publishing; 2015: 139-151.Speakers accompany their speech with incessant, subtle head movements. It is important to implement such “visual prosody” in virtual agents, not only to make their behavior more natural, but also because it has been shown to help listeners understand speech. We contribute a visual prosody model for interactive virtual agents that shall be capable of having live, non-scripted interactions with humans and thus have to use Text-To-Speech rather than recorded speech. We present our method for creating visual prosody online from continuous TTS output, and we report results from three crowdsourcing experiments carried out to see if and to what extent it can help in enhancing the interaction experience with an agent

    Evaluierung der Reliabilität von Serum-Metaboliten als Kandidaten für chronische Erkrankungen in der EPIC-Potsdam Studie mit Hilfe von Targeted Metabolomics

    No full text
    Steam traction engines with Fowler steam carne No.17106 'Duke of York', registration 'KD2826' (built 1928), third from left. Image probably taken at Hartlebury Steam Rally, 1953

    Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach.

    Get PDF
    Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21-0.44], factor 2 3.82 [2.64-5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D

    Novel biomarkers for pre‐diabetes identified by metabolomics

    Get PDF
    Type 2 diabetes (T2D) can be prevented in pre-diabetic individuals with impaired glucose tolerance (IGT). Here, we have used a metabolomics approach to identify candidate biomarkers of pre-diabetes. We quantified 140 metabolites for 4297 fasting serum samples in the population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort. Our study revealed significant metabolic variation in pre-diabetic individuals that are distinct from known diabetes risk indicators, such as glycosylated hemoglobin levels, fasting glucose and insulin. We identified three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine) that had significantly altered levels in IGT individuals as compared to those with normal glucose tolerance, with P-values ranging from 2.4 × 10(−4) to 2.1 × 10(−13). Lower levels of glycine and LPC were found to be predictors not only for IGT but also for T2D, and were independently confirmed in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. Using metabolite–protein network analysis, we identified seven T2D-related genes that are associated with these three IGT-specific metabolites by multiple interactions with four enzymes. The expression levels of these enzymes correlate with changes in the metabolite concentrations linked to diabetes. Our results may help developing novel strategies to prevent T2D
    corecore