64 research outputs found

    Genomic Investigation of Two Acinetobacter baumannii Outbreaks in a Veterinary Intensive Care Unit in The Netherlands

    Get PDF
    Acinetobacter baumannii is a nosocomial pathogen that frequently causes healthcare-acquired infections. The global spread of multidrug-resistant (MDR) strains with its ability to survive in the environment for extended periods imposes a pressing public health threat. Two MDR A. baumannii outbreaks occurred in 2012 and 2014 in a companion animal intensive care unit (caICU) in the Netherlands. Whole-genome sequencing (WGS) was performed on dog clinical isolates (n = 6), environmental isolates (n = 5), and human reference strains (n = 3) to investigate if the isolates of the two outbreaks were related. All clinical isolates shared identical resistance phenotypes displaying multidrug resistance. Multi-locus Sequence Typing (MLST) revealed that all clinical isolates belonged to sequence type ST2. The core genome MLST (cgMLST) results confirmed that the isolates of the two outbreaks were not related. Comparative genome analysis showed that the outbreak isolates contained different gene contents, including mobile genetic elements associated with antimicrobial resistance genes (ARGs). The time-measured phylogenetic reconstruction revealed that the outbreak isolates diverged approximately 30 years before 2014. Our study shows the importance of WGS analyses combined with molecular clock investigations to reduce transmission of MDR A. baumannii infections in companion animal clinics

    Gut Colonization by ESBL-Producing Escherichia coli in Dogs Is Associated with a Distinct Microbiome and Resistome Composition

    Get PDF
    The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks ( n  = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia -Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs

    Genomic Characterization of Extended-Spectrum Cephalosporin-Resistant Salmonella enterica in the Colombian Poultry Chain

    Get PDF
    Salmonella enterica serovars have been isolated from Colombian broilers and broiler meat. The aim of this study was to investigate the diversity of ESBL/pAmpC genes in extended-spectrum cephalosporin resistant Salmonella enterica and the phylogeny of ESBL/pAmpC-carrying Salmonella using Whole Genome Sequencing (WGS). A total of 260 cefotaxime resistant Salmonella isolates, obtained between 2008 and 2013 from broiler farms, slaughterhouses and retail, were included. Isolates were screened by PCR for ESBL/pAmpC genes. Gene and plasmid subtyping and strain Multi Locus Sequence Typing was performed in silico for a selection of fully sequenced isolates. Core-genome-based analyses were performed per ST encountered. blaCMY−2−like was carried in 168 isolates, 52 carried blaCTX−M−2 group, 7 blaSHV, 5 a combination of blaCMY−2−like-blaSHV and 3 a combination of blaCMY−2−like-blaCTX−M−2 group. In 25 isolates no ESBL/pAmpC genes that were screened for were found. WGS characterization of 36 selected strains showed plasmid-encoded blaCMY−2 in 21, blaCTX−M−165 in 11 and blaSHV−12 in 7 strains. These genes were mostly carried on IncI1/ST12, IncQ1, and IncI1/ST231 plasmids, respectively. Finally, 17 strains belonged to S. Heidelberg ST15, 16 to S. Paratyphi B variant Java ST28, 1 to S. Enteritidis ST11, 1 to S. Kentucky ST152 and 1 to S. Albany ST292. Phylogenetic comparisons with publicly available genomes showed separate clustering of Colombian S. Heidelberg and S. Paratyphi B var. Java. In conclusion, resistance to extended-spectrum cephalosporins in Salmonella from Colombian poultry is mainly encoded by blaCMY−2 and blaCTX−M−165 genes. These genes are mostly associated with IncI1/ST12 and IncQ1 plasmids, respectively. Evolutionary divergence is observed between Colombian S. Heidelberg and S. Paratyphi B var. Java and those from other countries

    Understanding the genetic basis of the incompatibility of IncK1 and IncK2 plasmids.

    No full text
    Antimicrobial resistance is a persistent challenge in human and veterinary medicine, which is often encoded on plasmids which are transmissible between bacterial cells. Incompatibility is the inability of two plasmids to be stably maintained in one cell which is caused by the presence of identical or closely related shared determinants between two plasmids originating from partition or replication mechanisms. For I-complex plasmids in Enterobacteriacae, replication- based incompatibility is caused by the small antisense RNA stem-loop structure called RNAI. The I-complex plasmid group IncK consists of two compatible subgroups, IncK1 and IncK2, for which the RNAI differs only by five nucleotides. In this study we focussed on the interaction of the IncK1 and IncK2 RNAI structures by constructing minireplicons containing the replication region of IncK1 or IncK2 plasmids coupled with a kanamycin resistance marker. Using minireplicons excludes involvement of incompatibility mechanisms other than RNAI. Additionally, we performed single nucleotide mutagenesis targeting the five nucleotides that differ between the IncK1 and IncK2 RNAI sequences of these minireplicons. The obtained results show that a single nucleotide change in the RNAI structure is responsible for the compatible phenotype of IncK1 with IncK2 plasmids. Only nucleotides in the RNAI top loop and interior loop have an effect on minireplicon incompatibility with wild type plasmids, while mutations in the stem of the RNAI structure had no significant effect on incompatibility. Understanding the molecular basis of incompatibility is relevant for future in silico predictions of plasmid incompatibility

    Longitudinal study of extended-spectrum-β-lactamase- and AmpC-Producing Enterobacteriaceae in household dogs

    No full text
    A longitudinal study was performed to (i) investigate the continuity of shedding of extended-spectrum-beta-lactamase (ESBL)-producing Enterobacteriaceae in dogs without clinical signs, (ii) identify dominant plasmid-mediated ESBL genes, and (iii) quantify ESBL-producing Enterobacteriaceae in feces. Fecal samples from 38 dogs were collected monthly for 6 months. Additional samples were collected from 7 included dogs on a weekly basis for 6 weeks. Numbers of CFU per gram of feces for non-wild-type Enterobacteriaceae were determined by using MacConkey agar supplemented with 1 mg/liter cefotaxime (MCC), and those for total Enterobacteriaceae were determined by using MacConkey agar. Cefotaxime-resistant isolates were screened by PCR and sequence analysis for the presence of blaCTX-M, blaCMY, blaSHV, blaOXA, and blaTEM gene families. Bacterial species were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. PCR-negative isolates were tested by a double-disk synergy test for enhanced AmpC expression. A total of 259 samples were screened, and 126 samples were culture positive on MCC, resulting in 352 isolates, 327 of which were Escherichia coli. Nine dogs were continuously positive during this study, and 6 dogs were continuously negative. Monthly or weekly shifts in fecal shedding were observed for 23 dogs. Genotyping showed a large variety of ESBL genes and gene combinations at single and multiple consecutive sampling moments. The ESBL genes blaCTX-M-1, blaCTX-M-14, blaCTX-M-15, blaSHV-12, and blaCMY-2 were most frequently found. The mean number of CFU of non-wild-type Enterobacteriaceae was 6.11 × 108 CFU/g feces. This study showed an abundance of ESBL-producing Enterobacteriaceae in dogs in the Netherlands, mostly in high concentrations. Fecal shedding was shown to be highly dynamic over time, which is important to consider when studying ESBL epidemiology

    High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs

    No full text
    Extended-spectrum-β-lactamase (ESBL)/AmpC producing Enterobacteriaceae have been reported worldwide amongst isolates obtained from humans, food-producing animals, companion animals, and environmental sources. However, data on prevalence of fecal carriage of ESBL/AmpC producing Enterobacteriaceae in healthy companion animals is limited. This pilot study describes the prevalence of ESBL/AmpC encoding genes in healthy cats and dogs, and cats and dogs with diarrhea. Twenty fecal samples of each group were cultured on MacConkey agar supplemented with 1 mg/L cefotaxime and in LB-enrichment broth supplemented with 1 mg/L cefotaxime, which was subsequently inoculated on MacConkey agar supplemented with 1 mg/L cefotaxime. ESBL/AmpC genes were identified using the Check-Points CT103 micro array kit and subsequently by sequencing analysis. Chromosomal ampC promoter mutations were detected by PCR and sequencing analysis. From the healthy and diarrheic dogs, respectively 45 and 55% were positive for Escherichia coli with reduced susceptibility for cefotaxime. From the healthy and diarrheic cats, the estimated prevalence was respectively 0 and 25%. One diarrheic cat was positive for both reduced susceptible E. coli and Proteus mirabilis. The ESBL/AmpC genes found in this study were mainly bla CTX-M-1, but also bla CTX-M-14, bla CTX-M-15, bla TEM-52-StPaul, bla SHV-12, and bla CMY-2 were detected. This pilot study showed that the prevalence of ESBL/AmpC producing Enterobacteriaceae in healthy and diarrheic dogs, and diarrheic cats was relatively high. Furthermore, the genes found were similar to those found in isolates of both human and food-producing animal origin. However, since the size of this study was relatively small, extrapolation of the data to the general population of cats and dogs should be done with great care

    qnrB19 Gene Bracketed by IS26 on a 40-Kilobase IncR Plasmid from an Escherichia coli Isolate from a Veal Calf â–¿

    No full text
    qnrB19 genes have been reported in Escherichia coli, Escherichia hermannii, Salmonella enterica, and Klebsiella spp., located on IncN, IncL/M (human isolates), and ColE-like (both human and chicken isolates) plasmids (2, 6, 8, 9, 11, 13, 14, 16). This study describes the characterization of the genetic environment of a plasmid-mediated qnrB19 gene identified in E. coli isolated from a veal calf in the Netherlands

    Incompatibility and phylogenetic relationship of I-complex plasmids

    Get PDF
    Plasmid incompatibility is the inability of two plasmids to be stably maintained in one cell, resulting in loss of one of the plasmids in daughter cells. Dislodgement is a phenotypically distinct form of incompatibility, described as an imperfect reproduction, manifesting in rapid exclusion of a resident plasmid after superinfection. The relationship between plasmids of the phenotypic incompatibility groups IncB/O and IncZ is unclear. Their inability to co-exist was initially referred to as dislodgement while other research reached the conclusion that IncB/O and IncZ plasmids are incompatible. In this manuscript we re-evaluated the relationship between IncB/O and IncZ plasmids to settle these conflicting conclusions. We performed dislodgement testing of R16Δ (IncB/O) and pSFE-059 (IncZ) plasmids by electroporation in a bacterial cell and checked their stability. Stability tests of the obtained plasmid pair showed that the IncB/O plasmid was exclusively and almost completely lost from the heteroplasmid Escherichia coli population. Other IncB/O - IncZ pairs could not form a heteroplasmid population, using conjugation or electroporation. Our data supports the previous suggestion that IncB/O and IncZ plasmids may be considered phenotypically incompatible
    • …
    corecore