2,811 research outputs found

    For universals (but not finite-state learning) visit the zoo

    Get PDF

    Shot Noise of Spin-Decohering Transport in Spin-Orbit Coupled Nanostructures

    Full text link
    We generalize the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injected from a spin-filtering or ferromagnetic electrode into a quantum-coherent nanostructure governed by various spin-dependent interactions. This formalism yields the spin-resolved shot noise power for different experimental measurement setups--with ferromagnetic source and ferromagnetic or normal drain electrodes--whose evaluation for the diffusive multichannel quantum wires with the Rashba (SO) spin-orbit coupling shows how spin decoherence and dephasing lead to substantial enhancement of charge current fluctuations (characterized by Fano factors >1/3> 1/3). However, these processes and the corresponding shot noise increase are suppressed in narrow wires, so that charge transport experiments measuring the Fano factor FF_{\uparrow \to \uparrow \downarrow} in a ferromagnet/SO-coupled-wire/paramagnet setup also quantify the degree of phase-coherence of transported spin--we predict a one-to-one correspondence between the magnitude of the spin polarization vector and FF_{\uparrow \to \uparrow \downarrow}.Comment: 8 pages, 3 figure; enhanced with 2 new figure

    Why the Universe Started from a Low Entropy State

    Get PDF
    We show that the inclusion of backreaction of massive long wavelengths imposes dynamical constraints on the allowed phase space of initial conditions for inflation, which results in a superselection rule for the initial conditions. Only high energy inflation is stable against collapse due to the gravitational instability of massive perturbations. We present arguments to the effect that the initial conditions problem {\it cannot} be meaningfully addressed by thermostatistics as far as the gravitational degrees of freedom are concerned. Rather, the choice of the initial conditions for the universe in the phase space and the emergence of an arrow of time have to be treated as a dynamic selection.Comment: 12 pages, 2 figs. Final version; agrees with accepted version in Phys. Rev.

    Dynamics of Global Entanglement under Decoherence

    Full text link
    We investigate the dynamics of global entanglement, the Meyer-Wallach measure, under decoherence, analytically. We study two important class of multi-partite entangled states, the Greenberger-Horne-Zeilinger and the W state. We obtain exact results for various models of system-environment interactions (decoherence). Our results shows distinctly different scaling behavior for these initially entangled states indicating a relative robustness of the W state, consistent with previous studies.Comment: 5 pages and 5 figure

    Collisional decoherence reexamined

    Full text link
    We re-derive the quantum master equation for the decoherence of a massive Brownian particle due to collisions with the lighter particles from a thermal environment. Our careful treatment avoids the occurrence of squares of Dirac delta functions. It leads to a decoherence rate which is smaller by a factor of 2 pi compared to previous findings. This result, which is in agreement with recent experiments, is confirmed by both a physical analysis of the problem and by a perturbative calculation in the weak coupling limit.Comment: 33 pages, 4 figure

    CO2 and non-CO2 radiative forcings in climate projections for twenty-first century mitigation scenarios

    Get PDF
    Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle-climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse-response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the centur

    The General Correlation Function in the Schwinger Model on a Torus

    Full text link
    In the framework of the Euclidean path integral approach we derive the exact formula for the general N-point chiral densities correlator in the Schwinger model on a torusComment: 17 pages, misprints corrected, references adde

    Self-induced decoherence approach: Strong limitations on its validity in a simple spin bath model and on its general physical relevance

    Get PDF
    The "self-induced decoherence" (SID) approach suggests that (1) the expectation value of any observable becomes diagonal in the eigenstates of the total Hamiltonian for systems endowed with a continuous energy spectrum, and (2), that this process can be interpreted as decoherence. We evaluate the first claim in the context of a simple spin bath model. We find that even for large environments, corresponding to an approximately continuous energy spectrum, diagonalization of the expectation value of random observables does in general not occur. We explain this result and conjecture that SID is likely to fail also in other systems composed of discrete subsystems. Regarding the second claim, we emphasize that SID does not describe a physically meaningful decoherence process for individual measurements, but only involves destructive interference that occurs collectively within an ensemble of presupposed "values" of measurements. This leads us to question the relevance of SID for treating observed decoherence effects.Comment: 11 pages, 4 figures. Final published versio

    Finite-Time Disentanglement via Spontaneous Emission

    Full text link
    We show that under the influence of pure vacuum noise two entangled qubits become completely disentangled in a finite time, and in a specific example we find the time to be given by ln(2+22)\ln \Big(\frac{2 +\sqrt 2}{2}\Big) times the usual spontaneous lifetime.Comment: revtex, 4 pages, 2 figure
    corecore