13,727 research outputs found
Field-induced confinement in (TMTSF)2ClO4 under accurately aligned magnetic fields
We present transport measurements along the least conducting c direction of
the organic superconductor (TMTSF)2ClO4, performed under an accurately aligned
magnetic field in the low temperature regime. The experimental results reveal a
two-dimensional confinement of the carriers in the (a,b) planes which is
governed by the magnetic field component along the b' direction. This 2-D
confinement is accompanied by a metal-insulator transition for the c axis
resistivity. These data are supported by a quantum mechanical calculation of
the transverse transport taking into account in self consistent treatment the
effect of the field on the interplane Green function and on the intraplane
scattering time
Simple scheme for expanding a polarization-entangled W state by adding one photon
We propose a simple scheme for expanding a polarization-entangled W state. By
mixing a single photon and one of the photons in an n-photon W state at a
polarization-dependent beam splitter (PDBS), we can obtain an (n+1)-photon W
state after post-selection. Our scheme also opens the door for generating
n-photon W states using single photons and linear optics.Comment: 3 pages, 2 figure
Reducing Residual-Mass Effects for Domain-Wall Fermions
It has been suggested to project out a number of low-lying eigenvalues of the
four-dimensional Wilson--Dirac operator that generates the transfer matrix of
domain-wall fermions in order to improve simulations with domain-wall fermions.
We investigate how this projection method reduces the residual chiral
symmetry-breaking effects for a finite extent of the extra dimension. We use
the standard Wilson as well as the renormalization--group--improved gauge
action. In both cases we find a substantially reduced residual mass when the
projection method is employed. In addition, the large fluctuations in this
quantity disappear.Comment: 18 pages, 10 figures, references updated, comments adde
Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlOx/Pt structures
We report observations of tunneling anisotropic magnetoresitance (TAMR) in
vertical tunnel devices with a ferromagnetic multilayer-(Co/Pt) electrode and a
non-magnetic Pt counter-electrode separated by an AlOx barrier. In stacks with
the ferromagnetic electrode terminated by a Co film the TAMR magnitude
saturates at 0.15% beyond which it shows only weak dependence on the magnetic
field strength, bias voltage, and temperature. For ferromagnetic electrodes
terminated by two monolayers of Pt we observe order(s) of magnitude enhancement
of the TAMR and a strong dependence on field, temperature and bias. Discussion
of experiments is based on relativistic ab initio calculations of magnetization
orientation dependent densities of states of Co and Co/Pt model systems.Comment: 4 pages, 5 figures, to be published in Phys. Rev. Let
Generation of Three-Qubit Entangled W-State by Nonlinear Optical State Truncation
We propose an alternative scheme to generate W state via optical state
truncation using quantum scissors. In particular, these states may be generated
through three-mode optical state truncation in a Kerr nonlinear coupler. The
more general three-qubit state may be also produced if the system is driven by
external classical fields.Comment: 7 pages, 2 figur
Quantum teleportation via a W state
We investigate two schemes of the quantum teleportation with a state,
which belongs to a different class from a Greenberger-Horne-Zeilinger class. In
the first scheme, the state is shared by three parties one of whom, called
a sender, performs a Bell measurement. It is shown that quantum information of
an unknown state is split between two parties and recovered with a certain
probability. In the second scheme, a sender takes two particles of the
state and performs positive operator valued measurements in two ways. For two
schemes, we calculate the success probability and the average fidelity. We show
that the average fidelity of the second scheme cannot exceed that of the first
one.Comment: 7 pages, 1 figur
Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with NaI(Tl) crystal Detectors
Limits on the cross section for weakly interacting massive particles (WIMPs)
scattering off nucleons in the NaI(Tl) detectors at the Yangyang Underground
Laboratory are obtained with a 2967.4 kg*day data exposure. Nuclei recoiling
are identified by the pulse shape of scintillating photon signals. Data are
consistent with no nuclear recoil hypothesis, and 90% confidence level upper
limits are set. These limits partially exclude the DAMA/LIBRA region of
WIMP-sodium interaction with the same NaI(Tl) target detector. This 90%
confidence level upper limit on WIMP-nucleon spin-independent cross section is
3.26*10^-4 pb for a WIMP mass at 10 GeV/c^2
- …
