20,552 research outputs found
Entanglement of three-qubit pure states in terms of teleportation capability
We define an entanglement measure, called the partial tangle, which
represents the residual two-qubit entanglement of a three-qubit pure state. By
its explicit calculations for three-qubit pure states, we show that the partial
tangle is closely related to the faithfulness of a teleportation scheme over a
three-qubit pure state.Comment: 4 pages, 1 figure, accepted for publication as a Brief Report in
Physical Review
Teleportation capability, distillability, and nonlocality on three-qubit states
In this paper, we consider teleportation capability, distillability, and
nonlocality on three-qubit states. In order to investigate some relations among
them, we first find the explicit formulas of the quantities about the maximal
teleportation fidelity on three-qubit states. We show that if any three-qubit
state is useful for three-qubit teleportation then the three-qubit state is
distillable into a Greenberger-Horne-Zeilinger state, and that if any
three-qubit state violates a specific form of Mermin inequality then the
three-qubit state is useful for three-qubit teleportation.Comment: 5 pages, 2 figures; The old version has been generalized into the
results on general 3-qubit state
Generation linewidth of an auto-oscillator with a nonlinear frequency shift: Spin-torque nano-oscillator
It is shown that the generation linewidth of an auto-oscillator with a
nonlinear frequency shift (i.e. an auto-oscillator in which frequency depends
on the oscillation amplitude) is substantially larger than the linewidth of a
conventional quasi-linear auto-oscillator due to the renormalization of the
phase noise caused by the nonlinearity of the oscillation frequency. The
developed theory, when applied to a spin-torque nano-contact auto-oscillator,
predicts a minimum of the generation linewidth when the nano-contact is
magnetized at a critical angle to its plane, corresponding to the minimum
nonlinear frequency shift, in good agreement with recent experiments.Comment: 4 pages, 2 figure
Field-induced confinement in (TMTSF)2ClO4 under accurately aligned magnetic fields
We present transport measurements along the least conducting c direction of
the organic superconductor (TMTSF)2ClO4, performed under an accurately aligned
magnetic field in the low temperature regime. The experimental results reveal a
two-dimensional confinement of the carriers in the (a,b) planes which is
governed by the magnetic field component along the b' direction. This 2-D
confinement is accompanied by a metal-insulator transition for the c axis
resistivity. These data are supported by a quantum mechanical calculation of
the transverse transport taking into account in self consistent treatment the
effect of the field on the interplane Green function and on the intraplane
scattering time
Dynamical influence of vortex-antivortex pairs in magnetic vortex oscillators
We study the magnetization dynamics in a nanocontact magnetic vortex
oscillators as function of temperature. Low temperature experiments reveal that
the dynamics at low and high currents differ qualitatively. At low currents, we
excite a temperature independent standard oscillation mode, consisting in the
gyrotropic motion of a free layer vortex about the nanocontact. Above a
critical current, a sudden jump of the frequency is observed, concomitant with
a substantial increase of the frequency versus current slope factor. Using
micromagnetic simulation and analytical modeling, we associate this new regime
to the creation of a vortex-antivortex pair in the pinned layer of the spin
valve. The vortex-antivortex distance depends on the Oersted field which favors
a separation, and on the exchange bias field, which favors pair merging. The
pair in the pinned layer provides an additional spin torque altering the
dynamics of the free layer vortex, which can be quantitatively accounted for by
an analytical model
Computerized Response Inhibition Training For Children With Trichotillomania
Evidence suggests that trichotillomania is characterized by impairment in response inhibition, which is the ability to suppress pre-potent/dominant but inappropriate responses. This study sought to test the feasibility of computerized response inhibition training for children with trichotillomania. Twenty-two children were randomized to the 8-session response inhibition training (RIT; n = 12) or a waitlisted control (WLT; n = 10). Primary outcomes were assessed by an independent evaluator, using the Clinical Global Impression-Improvement (CGI-I), and the NIMH Trichotillomania Severity (NIMH-TSS) and Impairment scales (NIMH-TIS) at pre, post-training/waiting, and 1-month follow-up. Relative to the WLT group, the RIT group showed a higher response rate (55% vs. 11%) on the CGI-I and a lower level of impairment on the NIMH-TIS, at post-training. Overall symptom reductions rates on the NIMH-TSS were 34% (RIT) vs. 21% (WLT) at post-training. The RIT\u27s therapeutic gains were maintained at 1-month follow-up, as indicated by the CGI-I responder status (= 66%), and a continuing reduction in symptom on the NIMH-TSS. This pattern of findings was also replicated by the 6 waitlisted children who received the same RIT intervention after post-waiting assessment. Results suggest that computerized RIT may be a potentially useful intervention for trichotillomania
- …
