9,387 research outputs found

    Selfoscillations of Suspended Carbon Nanotubes with a Deflection Sensitive Resistance under Voltage Bias

    Full text link
    We theoretically investigate the electro-mechanics of a Suspended Carbon Nanotube with a Deflection Sensitive Resistance subjected to a homogeneous Magnetic Field and a constant Voltage Bias. We show that, (with the exception of a singular case), for a sufficiently high magnetic field the time-independent state of charge transport through the nanotube becomes unstable to selfexcitations of the mechanical vibration accompanied by oscialltions in the voltage drop and current across the nanotube.Comment: 4 pages, 1 figur

    Hydrogen transport in superionic system Rb3H(SeO4)2: a revised cooperative migration mechanism

    Full text link
    We performed density functional studies of electronic properties and mechanisms of hydrogen transport in Rb3H(SeO4)2 crystal which represents technologically promising class M3H(XO4)2 of proton conductors (M=Rb,Cs, NH4; X=S,Se). The electronic structure calculations show a decisive role of lattice dynamics in the process of proton migration. In the obtained revised mechanism of proton transport, the strong displacements of the vertex oxygens play a key role in the establishing the continuous hydrogen transport and in the achieving low activation energies of proton conduction which is in contrast to the standard two-stage Grotthuss mechanism of proton transport. Consequently, any realistic model description of proton transport should inevitably involve the interactions with the sublattice of the XO4 groups.Comment: 11 pages, 11 figures, to appear in Physical Review

    Magnetic-field dependence of dynamical vortex response in two-dimensional Josephson junction arrays and superconducting films

    Full text link
    The dynamical vortex response of a two-dimensional array of the resistively shunted Josephson junctions in a perpendicular magnetic field is inferred from simulations. It is found that, as the magnetic field is increased at a fixed temperature, the response crosses over from normal to anomalous, and that this crossover can be characterized by a single dimensionless parameter. It is described how this crossover should be reflected in measurements of the complex impedance for Josephson junction arrays and superconducting films.Comment: 4 pages including 5 figures in two columns, final versio

    Balloon-borne radiometer measurement of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    Get PDF
    Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990–2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and global optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. This suggests that, to within the errors of the 1990 measurements, there has been no significant change in the HNO3 summer mid-latitude profile

    Condensation in nongeneric trees

    Full text link
    We study nongeneric planar trees and prove the existence of a Gibbs measure on infinite trees obtained as a weak limit of the finite volume measures. It is shown that in the infinite volume limit there arises exactly one vertex of infinite degree and the rest of the tree is distributed like a subcritical Galton-Watson tree with mean offspring probability m<1m<1. We calculate the rate of divergence of the degree of the highest order vertex of finite trees in the thermodynamic limit and show it goes like (1−m)N(1-m)N where NN is the size of the tree. These trees have infinite spectral dimension with probability one but the spectral dimension calculated from the ensemble average of the generating function for return probabilities is given by 2β−22\beta -2 if the weight wnw_n of a vertex of degree nn is asymptotic to n−βn^{-\beta}.Comment: 57 pages, 14 figures. Minor change

    Quantum Information Processing and Relativistic Quantum Fields

    Full text link
    It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of field modes are shown to lead to superluminal signalling. Such detectors do, however, provide successful phenomenological models of atom-qubits interacting with quantum fields in a cavity but are valid only on time scales many orders of magnitude larger than the light-crossing time of the cavity.Comment: 16 pages, 2 figures. Improved abstract and discussion of 'ideal' measurements. References to previous work adde

    Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea - Part 1: Observations and source classification

    Get PDF
    Abstract. Ship-based measurements of aerosol and cloud condensation nuclei (CCN) properties are presented for 2 weeks of observations in remote marine regions of the South China Sea/East Sea during the southwestern monsoon (SWM) season. Smoke from extensive biomass burning throughout the Maritime Continent advected into this region during the SWM, where it was mixed with anthropogenic continental pollution and emissions from heavy shipping activities. Eight aerosol types were identified using a k-means cluster analysis with data from a size-resolved CCN characterization system. Interpretation of the clusters was supplemented by additional onboard aerosol and meteorological measurements, satellite, and model products for the region. A typical bimodal marine boundary layer background aerosol population was identified and observed mixing with accumulation mode aerosol from other sources, primarily smoke from fires in Borneo and Sumatra. Hygroscopicity was assessed using the κ parameter and was found to average 0.40 for samples dominated by aged accumulation mode smoke; 0.65 for accumulation mode marine aerosol; 0.60 in an anthropogenic aerosol plume; and 0.22 during a short period that was characterized by elevated levels of volatile organic compounds not associated with biomass burning impacts. As a special subset of the background marine aerosol, clean air masses substantially scrubbed of particles were observed following heavy precipitation or the passage of squall lines, with changes in observed aerosol properties occurring on the order of minutes. Average CN number concentrations, size distributions, and κ values are reported for each population type, along with CCN number concentrations for particles that activated at supersaturations between 0.14 and 0.85 %

    Parametrization of dark energy equation of state Revisited

    Full text link
    A comparative study of various parametrizations of the dark energy equation of state is made. Astrophysical constraints from LSS, CMB and BBN are laid down to test the physical viability and cosmological compatibility of these parametrizations. A critical evaluation of the 4-index parametrizations reveals that Hannestad-M\"{o}rtsell as well as Lee parametrizations are simple and transparent in probing the evolution of the dark energy during the expansion history of the universe and they satisfy the LSS, CMB and BBN constraints on the dark energy density parameter for the best fit values.Comment: 11 page
    • …
    corecore