5,631 research outputs found

    Selfoscillations of Suspended Carbon Nanotubes with a Deflection Sensitive Resistance under Voltage Bias

    Full text link
    We theoretically investigate the electro-mechanics of a Suspended Carbon Nanotube with a Deflection Sensitive Resistance subjected to a homogeneous Magnetic Field and a constant Voltage Bias. We show that, (with the exception of a singular case), for a sufficiently high magnetic field the time-independent state of charge transport through the nanotube becomes unstable to selfexcitations of the mechanical vibration accompanied by oscialltions in the voltage drop and current across the nanotube.Comment: 4 pages, 1 figur

    A theory of normed simulations

    Get PDF
    In existing simulation proof techniques, a single step in a lower-level specification may be simulated by an extended execution fragment in a higher-level one. As a result, it is cumbersome to mechanize these techniques using general purpose theorem provers. Moreover, it is undecidable whether a given relation is a simulation, even if tautology checking is decidable for the underlying specification logic. This paper introduces various types of normed simulations. In a normed simulation, each step in a lower-level specification can be simulated by at most one step in the higher-level one, for any related pair of states. In earlier work we demonstrated that normed simulations are quite useful as a vehicle for the formalization of refinement proofs via theorem provers. Here we show that normed simulations also have pleasant theoretical properties: (1) under some reasonable assumptions, it is decidable whether a given relation is a normed forward simulation, provided tautology checking is decidable for the underlying logic; (2) at the semantic level, normed forward and backward simulations together form a complete proof method for establishing behavior inclusion, provided that the higher-level specification has finite invisible nondeterminism.Comment: 31 pages, 10figure

    Real-Reward Testing for Probabilistic Processes (Extended Abstract)

    Full text link
    We introduce a notion of real-valued reward testing for probabilistic processes by extending the traditional nonnegative-reward testing with negative rewards. In this richer testing framework, the may and must preorders turn out to be inverses. We show that for convergent processes with finitely many states and transitions, but not in the presence of divergence, the real-reward must-testing preorder coincides with the nonnegative-reward must-testing preorder. To prove this coincidence we characterise the usual resolution-based testing in terms of the weak transitions of processes, without having to involve policies, adversaries, schedulers, resolutions, or similar structures that are external to the process under investigation. This requires establishing the continuity of our function for calculating testing outcomes.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Characterising Probabilistic Processes Logically

    Full text link
    In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.Comment: 18 page

    Quantum Information Processing and Relativistic Quantum Fields

    Full text link
    It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of field modes are shown to lead to superluminal signalling. Such detectors do, however, provide successful phenomenological models of atom-qubits interacting with quantum fields in a cavity but are valid only on time scales many orders of magnitude larger than the light-crossing time of the cavity.Comment: 16 pages, 2 figures. Improved abstract and discussion of 'ideal' measurements. References to previous work adde

    Current-voltage characteristics of the two-dimensional XY model with Monte Carlo dynamics

    Full text link
    Current-voltage characteristics and the linear resistance of the two-dimensional XY model with and without external uniform current driving are studied by Monte Carlo simulations. We apply the standard finite-size scaling analysis to get the dynamic critical exponent zz at various temperatures. From the comparison with the resistively-shunted junction dynamics, it is concluded that zz is universal in the sense that it does not depend on details of dynamics. This comparison also leads to the quantification of the time in the Monte Carlo dynamic simulation.Comment: 5 pages in two columns including 5 figures, to appear in PR

    Effect of vertebral fractures on function, quality of life and hospitalisation the AGES-Reykjavik study.

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Understanding the determinants of health burden after a fracture in ageing populations is important. Assess the effect of clinical vertebral and other osteoporotic fractures on function and the subsequent risk of hospitalisation. Individuals from the prospective population-based cohort study Age, Gene/Environment Susceptibility (AGES)-Reykjavik study were examined between 2002 and 2006 and followed up for 5.4 years. A total of 5,764 individuals, 57.7% women, born 1907-35, mean age 77. Method: four groups with a verified fracture status were used; vertebral fractures, other osteoporotic fractures excluding vertebral, non-osteoporotic fractures and not-fractured were compared and analysed for the effect on mobility, strength, QoL, ADL, co-morbidity and hospitalisation. Worst performance on functional tests was in the vertebral fracture group for women (P < 0.0001) and the other osteoporotic fractures group for men (P < 0.05). Both vertebral and other osteoporotic fractures, showed an increased risk of hospitalisation, HR = 1.4 (95% CI: 1.3-1.7) and 1.2 (95% CI: 1.1-1.2) respectively (P < 0.0001). Individuals with vertebral fractures had 50% (P < 0.0001) longer hospitalisation than not-fractured and 33% (P < 0.002) longer than the other osteoporotic fractures group. Individuals with a history of clinical vertebral fracture seem to carry the greatest health burden compared with other fracture groups, emphasising the attention which should be given to those individuals.National Institutes of Health, USA N01-AG-12100 National Institute on Aging Hjartavernd (The Icelandic Heart Association) Althingi (The Icelandic Parliament

    Searches for Physics Beyond the Standard Model at Colliders

    Full text link
    All experimental measurements of particle physics today are beautifully described by the Standard Model. However, there are good reasons to believe that new physics may be just around the corner at the TeV energy scale. This energy range is currently probed by the Tevatron and HERA accelerators and selected results of searches for physics beyond the Standard Model are presented here. No signals for new physics have been found and limits are placed on the allowed parameter space for a variety of different particles.Comment: Proceedings for 2007 Europhysics Conference on High Energy Physics, Manchester, July 200

    The nanoscale phase separation in hole-doped manganites

    Full text link
    A macroscopic phase separation, in which ferromagnetic clusters are observed in an insulating matrix, is sometimes observed, and believed to be essential to the colossal magnetoresistive (CMR) properties of manganese oxides. The application of a magnetic field may indeed trigger large magnetoresistance effects due to the percolation between clusters allowing the movement of the charge carriers. However, this macroscopic phase separation is mainly related to extrinsic defects or impurities, which hinder the long-ranged charge-orbital order of the system. We show in the present article that rather than the macroscopic phase separation, an homogeneous short-ranged charge-orbital order accompanied by a spin glass state occurs, as an intrinsic result of the uniformity of the random potential perturbation induced by the solid solution of the cations on the AA-sites of the structure of these materials. Hence the phase separation does occur, but in a more subtle and interesting nanoscopic form, here referred as ``homogeneous''. Remarkably, this ``nanoscale phase separation'' alone is able to bring forth the colossal magnetoresistance in the perovskite manganites, and is potentially relevant to a wide variety of other magnetic and/or electrical properties of manganites, as well as many other transition metal oxides, in bulk or thin film form as we exemplify throughout the article.Comment: jpsj2 TeX style (J. Phys. Soc. Jpn); 18 pages, 7 figure

    The use of digital photographs for the diagnosis of hand osteoarthritis: the AGES-Reykjavik study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of the study was to standardize a method using digital photographs to diagnose and grade hand osteoarthritis (HOA), to compare it with radiographs and clinical examination with regard to prevalence and relation to symptoms, and finally to construct a simple shortened version suitable for use in very large studies, where a global estimate may be preferable.</p> <p>Methods</p> <p>High quality photographs with standard distance and hand positioning were analysed for the presence of HOA and subsequently compared with standard radiographs and clinical examination in 381 random participants in the AGES-Reykjavik Study, a large population study. The mean age of the participants was 76 years.</p> <p>Results</p> <p>Using the photographic method, the most commonly affected joints were the second DIP joints followed by the third DIP joints and second and third PIP joints. Both interobserver (ICC = 0.83) and intraobserver reading agreements (ICC = 0.89) were acceptable. On comparison with radiography and clinical examination, aggregate scores were significantly correlated (R<sub>s </sub>0.35-0.69), more so in females (R<sub>s </sub>0.53-0.72) than males. Hand pain in males showed very little association with HOA findings by the three methods but all methods showed a comparable moderate association with hand pain in females. The performance of photography in predicting pain on most days for at least a month in females was comparable to that of radiography and clinical examination (AUC 0.63 <it>p </it>= 0.004). Analysis of intermittent pain yielded similar results for in the DIP and PIP joints (OR 3.2-3.3, <it>p </it>< 0.01), but for the CMC1 joints, both radiography (OR 9.0, <it>p </it>< 0.0001), and clinical examination (OR 9.8, <it>p </it>< 0.0001), had higher predictive odds ratios for pain than photography (OR 3.6, <it>p </it>< 0.0001)., A shortened, rapidly performed form of reading photographs also showed a high degree of correlation with the other methods (R<sub>s </sub>0.56-0.82).</p> <p>Conclusion</p> <p>High quality hand photographs can be used to diagnose and grade hand osteoarthritis. The method has the advantage of being inexpensive and easy to perform. By using a slightly simplified method of reading, it appears to be highly suitable for use in large studies.</p
    • …
    corecore