6 research outputs found
In-Situ Synchrotron Profile Analysis after High-Pressure Torsion Deformation
The presence of hydrostatic pressure is a general crucial characteristic of severe plastic deformation methods for reaching high strains and for introducing large quantities of lattice defects, which are necessary to establish new grain boundaries. Insights into the processes occurring during deformation and the influence of hydrostatic pressure are necessary to help better understand the SPD methods. A special experimental procedure was designed to simulate the hydrostatic pressure release: High pressure torsion (HPT)-deformed microstructure changes related to the release of hydrostatic pressure after the HPT deformation of copper and nickel were studied by freezing the sample before releasing the pressure. High-resolution in-situ X-ray diffraction of the heating process was performed using synchrotron radiation in order to apply X-ray line profile analysis to analyze the pressure release. The results on copper and nickel generally indicated the influence of hydrostatic pressure on the mobility and interaction of deformation-induced defects as well as the resulting microstructure
Recommended from our members
Microstructure, Texture, and Strength Development during High-Pressure Torsion of CrMnFeCoNi High-Entropy Alloy
The equiatomic face-centered cubic high-entropy alloy CrMnFeCoNi was severely deformed at room and liquid nitrogen temperature by high-pressure torsion up to shear strains of about 170. Itsmicrostructurewas analyzed by X-ray line profile analysis and transmission electronmicroscopy and its texture by X-ray microdiffraction. Microhardness measurements, after severe plastic deformation, were done at room temperature. It is shown that at a shear strain of about 20, a steady state grain size of 24 nm, and a dislocation density of the order of 1016 m-2 is reached. The dislocations are mainly screw-type with low dipole character. Mechanical twinning at room temperature is replaced by a martensitic phase transformation at 77 K. The texture developed at room temperature is typical for sheared face-centered cubic nanocrystalline metals, but it is extremely weak and becomes almost random after high-pressure torsion at 77 K. The strength of the nanocrystalline material produced by high-pressure torsion at 77 K is lower than that produced at room temperature. The results are discussed in terms of different mechanisms of deformation, including dislocation generation and propagation, twinning, grain boundary sliding, and phase transformation. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
Microstructure, Texture, and Strength Development during High-Pressure Torsion of CrMnFeCoNi High-Entropy Alloy
The equiatomic face-centered cubic high-entropy alloy CrMnFeCoNi was severely deformed at room and liquid nitrogen temperature by high-pressure torsion up to shear strains of about 170. Its microstructure was analyzed by X-ray line profile analysis and transmission electron microscopy and its texture by X-ray microdiffraction. Microhardness measurements, after severe plastic deformation, were done at room temperature. It is shown that at a shear strain of about 20, a steady state grain size of 24 nm, and a dislocation density of the order of 1016 m−2 is reached. The dislocations are mainly screw-type with low dipole character. Mechanical twinning at room temperature is replaced by a martensitic phase transformation at 77 K. The texture developed at room temperature is typical for sheared face-centered cubic nanocrystalline metals, but it is extremely weak and becomes almost random after high-pressure torsion at 77 K. The strength of the nanocrystalline material produced by high-pressure torsion at 77 K is lower than that produced at room temperature. The results are discussed in terms of different mechanisms of deformation, including dislocation generation and propagation, twinning, grain boundary sliding, and phase transformation
In-Situ Synchrotron Profile Analysis after High-Pressure Torsion Deformation
The presence of hydrostatic pressure is a general crucial characteristic of severe plastic deformation methods for reaching high strains and for introducing large quantities of lattice defects, which are necessary to establish new grain boundaries. Insights into the processes occurring during deformation and the influence of hydrostatic pressure are necessary to help better understand the SPD methods. A special experimental procedure was designed to simulate the hydrostatic pressure release: High pressure torsion (HPT)-deformed microstructure changes related to the release of hydrostatic pressure after the HPT deformation of copper and nickel were studied by freezing the sample before releasing the pressure. High-resolution in-situ X-ray diffraction of the heating process was performed using synchrotron radiation in order to apply X-ray line profile analysis to analyze the pressure release. The results on copper and nickel generally indicated the influence of hydrostatic pressure on the mobility and interaction of deformation-induced defects as well as the resulting microstructure.© 2019 by the author
Anomalous Evolution of Strength and Microstructure of High‐Entropy Alloy CoCrFeNiMn after High‐Pressure Torsion at 300 and 77 K
Ultrafine and nanocrystalline states of equiatomic face‐centered cubic (fcc) high‐entropy alloy (HEA) CoCrFeNiMn (“Cantor” alloy) are achieved by high‐pressure torsion (HPT) at 300 K (room temperature, RT) and 77 K (cryo). Although the hardness after RT‐HPT reaches exceptionally high values, those from cryo‐HPT are distinctly lower, at least when the torsional strain lies beyond γ = 25. The values are stable even during long‐time storage at ambient temperature. A similar paradoxal result is reflected by torque data measured in situ during HPT processing. The reasons for this paradox are attributed to the enhanced hydrostatic pressure, cryogenic temperature, and especially large shear strains achieved by the cryo‐HPT. At these conditions, selected area electron diffraction (SAD) patterns indicate that a partial local phase change from fcc to hexagonal close‐packed (hcp) structure occurs, which results in a highly heterogeneous structure. This heterogeneity is accompanied by both an increase in average grain size and especially a strong decrease in average dislocation density, which is estimated to mainly cause the paradox low strength.© 2019 The Author