407 research outputs found

    eHealth in cardiovascular risk management to prevent cognitive decline

    Get PDF
    Cardiovascular diseases and dementia are diseases that have a major impact on our society. These diseases share a number of risk factors, including hypertension, hypercholesterolemia, smoking, diabetes mellitus, obesity and physical inactivity. One can imagine that even a small improvement in cardiovascular risk factor management in a large number of people can lead to a substantial beneficial effect on overall incident cardiovascular disease and maybe even postpone or prevent dementia. However, it is not clear what the optimal target level is in cardiovascular prevention in older adults and to prevent cognitive decline. We can use eHealth to optimise cardiovascular risk management by developing internet interventions that focus on prevention. eHealth can also play an important role in improving research purposes. You can easily reach a wide audience, perform remote repeated measurements and provide patient-centred care at lower costs. The aim of this thesis is to provide insight in the possibilities of cardiovascular prevention via eHealth and mHealth, and to show different aspects of cognitive functioning: assessing, predicting and preventing cognitive decline

    Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells

    Get PDF
    Dendritic cells (DCs) capture and internalize human immunodeficiency virus (HIV)-1 through C-type lectins, including DC-SIGN. These cells mediate efficient infection of T cells by concentrating the delivery of virus through the infectious synapse, a process dependent on the cytoplasmic domain of DC-SIGN. Here, we identify a cellular protein that binds specifically to the cytoplasmic region of DC-SIGN and directs internalized virus to the proteasome. This cellular protein, leukocyte-specific protein 1 (LSP1), was defined biochemically by immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. LSP1 is an F-actin binding protein involved in leukocyte motility and found on the cytoplasmic surface of the plasma membrane. LSP1 interacted specifically with DC-SIGN and other C-type lectins, but not the inactive mutant DC-SIGNΔ35, which lacks a cytoplasmic domain and shows altered virus transport in DCs. LSP1 diverts HIV-1 to the proteasome. Down-regulation of LSP1 with specific small interfering RNAs in human DCs enhanced HIV-1 transfer to T cells, and bone marrow DCs from lsp1−/− mice also showed an increase in transfer of HIV-1BaL to a human T cell line. Proteasome inhibitors increased retention of viral proteins in lsp1+/+ DCs, and substantial colocalization of virus to the proteasome was observed in wild-type compared with LSP1-deficient cells. Collectively, these data suggest that LSP1 protein facilitates virus transport into the proteasome after its interaction with DC-SIGN through its interaction with cytoskeletal proteins

    LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration

    Get PDF
    Leukocyte-specific protein 1 (LSP1), an F-actin binding protein and a major downstream substrate of p38 mitogen-activated protein kinase as well as protein kinase C, has been reported to be important in leukocyte chemotaxis. Although its distribution has been thought to be restricted to leukocytes, herein we report that LSP1 is expressed in endothelium and is essential to permit neutrophil emigration. Using intravital microscopy to directly visualize leukocyte rolling, adhesion, and emigration in postcapillary venules in LSP1-deficient (Lsp1−/−) mice, we found that LSP1 deficiency inhibits neutrophil extravasation in response to various cytokines (tumor necrosis factor-α and interleukin-1β) and to neutrophil chemokine keratinocyte-derived chemokine in vivo. LSP1 deficiency did not affect leukocyte rolling or adhesion. Generation of Lsp1−/− chimeric mice using bone marrow transplantation revealed that in mice with Lsp1−/− endothelial cells and wild-type leukocytes, neutrophil transendothelial migration out of postcapillary venules is markedly restricted. In contrast, Lsp1−/− neutrophils in wild-type mice were able to extravasate normally. Consistent with altered endothelial function was a reduction in vascular permeability to histamine in Lsp1−/− animals. Western blot analysis and immunofluorescence microscopy examination confirmed the presence of LSP1 in wild-type but not in Lsp1−/− mouse microvascular endothelial cells. Cultured human endothelial cells also stained positive for LSP1. Our results suggest that LSP1 expressed in endothelium regulates neutrophil transendothelial migration

    Reactive Extrusion Grafting of Glycidyl Methacrylate onto Low-Density and Recycled Polyethylene Using Supercritical Carbon Dioxide

    Get PDF
    Glycidyl methacrylate (GMA) was grafted onto (recycled) polyethylene (PE) to design a new adhesive with better mechanical properties compared to non-grafted PE. The effects of the amount of GMA, the amount of dicumyl peroxide (DCP) and the use of supercritical carbon dioxide (scCO2 ) in a reactive extrusion (REX) were evaluated based on the grafting degree and efficiency of the grafted samples. Generally speaking, higher amounts of GMA led to higher functionalization degrees (FD), whereas higher amounts of DCP resulted in a lower FD due to the occurrence of more unfavorable side reactions. The influence of scCO2 showed different outcomes for the two substrates used. Higher FDs were obtained for the low-density polyethylene (LDPE) samples while, by contrast, lower FDs were obtained for the recycled polyethylene (RPE) samples when using scCO2 . Additionally, adjusting the screw speed and the temperature profile of the extruder to the half-life time of the radical initiator appeared to have the highest positive impact on the FD. According to the tensile tests, all the grafted samples can withstand higher stress levels, especially the grafted RPE, compared to the non-grafted samples

    Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis

    Get PDF
    Atherosclerotic lesions develop in regions of arterial curvature and branch points, which are exposed to disturbed blood flow and have unique gene expression patterns. The cellular and molecular basis for atherosclerosis susceptibility in these regions is not completely understood. In the intima of atherosclerosis-predisposed regions of the wild-type C57BL/6 mouse aorta, we quantified increased expression of several proinflammatory genes that have been implicated in atherogenesis, including vascular cell adhesion molecule–1 (VCAM-1) and a relative abundance of dendritic cells, but only occasional T cells. In contrast, very few intimal leukocytes were detected in regions resistant to atherosclerosis; however, abundant macrophages, including T cells, were found throughout the adventitia (Adv). Considerably lower numbers of intimal CD68+ leukocytes were found in inbred atherosclerosis-resistant C3H and BALB/c mouse strains relative to C57BL/6 and 129; however, leukocyte distribution throughout the Adv of all strains was similar. The predominant mechanism for the accumulation of intimal CD68+ cells was continued recruitment of bone marrow–derived blood monocytes, suggestive of low-grade chronic inflammation. Local proliferation of intimal leukocytes was low. Intimal CD68+ leukocytes were reduced in VCAM-1–deficient mice, suggesting that mechanisms of leukocyte accumulation in the intima of normal aorta are analogous to those in atherosclerosis

    GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions

    Get PDF
    The contribution of intimal cell proliferation to the formation of early atherosclerotic lesions is poorly understood. We combined 5-bromo-2′-deoxyuridine pulse labeling with sensitive en face immunoconfocal microscopy analysis, and quantified intimal cell proliferation and Ly-6Chigh monocyte recruitment in low density lipoprotein receptor–null mice. Cell proliferation begins in nascent lesions preferentially at their periphery, and proliferating cells accumulate in lesions over time. Although intimal cell proliferation increases in parallel to monocyte recruitment as lesions grow, proliferation continues when monocyte recruitment is inhibited. The majority of proliferating intimal cells are dendritic cells expressing CD11c and major histocompatibility complex class II and 33D1, but not CD11b. Systemic injection of granulocyte/macrophage colony-stimulating factor (GM-CSF) markedly increased cell proliferation in early lesions, whereas function-blocking anti–GM-CSF antibody inhibited proliferation. These findings establish GM-CSF as a key regulator of intimal cell proliferation in lesions, and demonstrate that both proliferation and monocyte recruitment contribute to the inception of atherosclerosis
    • …
    corecore