334 research outputs found

    A preprocessing method for improving effectiveness of Collaborative Filtering

    Get PDF
    Collaborative filtering uses information about customersā€™ preferences to make personal product recommendations and is achieving widespread success in e-Commerce. However, the traditional collaborative filtering algorithms do not response accurately to customersā€™ needs. The quality of the recommendation needs to be improved in order to support personalized service to each customer. In this paper, we present novel method to improve the accuracy of the collaborative filtering algorithm. We borrow vector space model from information retrieval theory and use it to effectively discriminate the preference weights on the items for each customer. The proposed method achieves more accurate recommendations for customers who purchase similar types of products repeatedly. Our experimental evaluation on the well-known MovieLens data set shows that our method does result in a better accuracy

    MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex.

    Get PDF
    MCM8-9 complex is required for homologous recombination (HR)-mediated repair of double-strand breaks (DSBs). Here we report that MCM8-9 is required for DNA resection by MRN (MRE11-RAD50-NBS1) at DSBs to generate ssDNA. MCM8-9 interacts with MRN and is required for the nuclease activity and stable association of MRN with DSBs. The ATPase motifs of MCM8-9 are required for recruitment of MRE11 to foci of DNA damage. Homozygous deletion of the MCM9 found in various cancers sensitizes a cancer cell line to interstrand-crosslinking (ICL) agents. A cancer-derived point mutation or an SNP on MCM8 associated with premature ovarian failure (POF) diminishes the functional activity of MCM8. Therefore, the MCM8-9 complex facilitates DNA resection by the MRN complex during HR repair, genetic or epigenetic inactivation of MCM8 or MCM9 are seen in human cancers, and genetic inactivation of MCM8 may be the basis of a POF syndrome

    An Internet-of-Things (IoT) system development and implementation for bathroom safety enhancement

    Get PDF
    Statistics show that a bathroom is one of the most hazardous places especially for older people. Older people typically have greater difficulties with mobility and balance, making them more vulnerable to fall and slip injuries in a bathroom and causing serious health issues related to short and long-term well-being. Various components in a bathroom including shower, tub, floor, and toilet have been re-designed, and independently upgraded their ergonomics and safety aspects; however, the number of bathroom injuries remains consistently high in general. Internet-of-Things (IoT) is a new concept applicable to almost everywhere and man-made objects. Wireless sensors detect abnormalities and send data through the network. A large amount of data can be collected from multiple IoT systems and it can be utilized for a big data analysis. The big data may reveal a hidden positive outcome beyond the initially intended purposes. A few commercial IoT applications such as wearable health monitoring and intelligent transportation systems are available. Nevertheless, An IoT application for a bathroom is not currently known. Unlike other applications, bathrooms have some unique aspects such as privacy and wet environment. This paper presents a holistic conceptual approach of an Internet-of-Things (IoT) system development and implementation to enhance bathroom safety. The concept focuses on the application in a large nursing care facility as a pilot testing bed. Authors propose 1) sensor selection and application, 2) integration of a wireless sensor local network system, 3) design concept for IoT implementation, and 4) a big data analysis system model in this paper

    Recent development of inorganic nanoparticles for biomedical imaging

    Get PDF
    Inorganic nanoparticle-based biomedical imaging probes have been studied extensively as a potential alternative to conventional molecular imaging probes. Not only can they provide better imaging performance but they can also offer greater versatility of multimodal, stimuli-responsive, and targeted imaging. However, inorganic nanoparticle-based probes are still far from practical use in clinics due to safety concerns and less-optimized efficiency. In this context, it would be valuable to look over the underlying issues. This outlook highlights the recent advances in the development of inorganic nanoparticle-based probes for MRI, CT, and anti-Stokes shift-based optical imaging. Various issues and possibilities regarding the construction of imaging probes are discussed, and future research directions are suggested.

    Controller Area Network With Flexible Data Rate (CAN FD) Eye Diagram Prediction

    Get PDF
    A method for predicting the eye diagram for a controller area network with a flexible data rate (CAN FD) is proposed in this article. A CAN FD changes a data rate according to the status to overcome the limitation of latency. In other words, when data to be transmitted are accumulated, the CAN FD increases the data rate up to 5 Mb/s. The CAN FD has a bus topology consisting of multiple electronic control units, which results in a significant amount of signal reflection. Thus, the above causes the signal integrity analysis uncertain. To avoid this, this article proposes a simplified model for the CAN FD and the eye diagram prediction method based on it. The proposed method has the deterministic and statistical: the deterministic part uses an iterative single bit response method for bit probabilities of a CAN FD packet, and the statistical part uses a modified double edge response method for the flexible data rate. For verification, this article compares the predicted eye diagram to the measured eye diagram, and they are nearly the same when the CAN FD operates at the nominal data rate of 1 and optional data rate of 2 Mb/s

    Controllable deposition of organic metal halide perovskite films with wafer-scale uniformity by single source flash evaporation

    Get PDF
    Conventional solution-processing techniques such as the spin-coating method have been used successfully to reveal excellent properties of organic-inorganic halide perovskites (OHPs) for optoelectronic devices such as solar cell and light-emitting diode, but it is essential to explore other deposition techniques compatible with large-scale production. Single-source flash evaporation technique, in which a single source of materials of interest is rapidly heated to be deposited in a few seconds, is one of the candidate techniques for large-scale thin film deposition of OHPs. In this work, we investigated the reliability and controllability of the single-source flash evaporation technique for methylammonium lead iodide (MAPbI(3)) perovskite. In-depth statistical analysis was employed to demonstrate that the MAPbI(3) films prepared via the flash evaporation have an ultrasmooth surface and uniform thickness throughout the 4-inch wafer scale. We also show that the thickness and grain size of the MAPbI(3) film can be controlled by adjusting the amount of the source and number of deposition steps. Finally, the excellent large-area uniformity of the physical properties of the deposited thin films can be transferred to the uniformity in the device performance of MAPbI(3) photodetectors prepared by flash evaporation which exhibited the responsivity of 0.2 A/W and detectivity of 3.82x10(11) Jones.
    • ā€¦
    corecore