149 research outputs found

    Parkour as a donor sport for athletic development in youth team sports: insights through an ecological dynamics lens

    Get PDF
    Analyses of talent development in sport have identified that skill can be enhanced through early and continued involvement in donor sports which share affordances (opportunities for action) with a performer's main target sport. Aligning key ideas of the Athletic Skills Model and ecological dynamics theory, we propose how the sport of parkour could provide a representative and adaptive platform for developing athletic skill (e.g. coordination, timing, balance, agility, spatial awareness and muscular strength). We discuss how youth sport development programmes could be (re) designed to include parkour-style activities, in order to develop general athletic skills in affordance-rich environments. It is proposed that team sports development programmes could particularly benefit from parkour-style training since it is exploratory and adaptive nature shapes utilisation of affordances for innovative and autonomous performance by athletes. Early introduction to varied, relevant activities for development of athleticism and skill, in a diversified training programme, would provide impetus for a fundamental shift away from the early specialisation approach favoured by traditional theories of skill acquisition and expertise in sport

    Design principles in housing for people with complex physical and cognitive disability: towards an integrated framework for practice

    Get PDF
    To develop a research-based environmental framework to guide the design and construction of suitable residential dwellings for individuals with complex disability. An environmental approach to housing design and development recognises that there are physical, psychological and social components relating to housing design, dwelling location and the neighbourhood context, and that these elements interact to affect the physical, psychological, and social wellness of individuals. Following theoretical review and synthesis, a comprehensive set of design features that are conducive to residents’ wellness and quality of life are described. It is clear that housing design and development for people with complex disability ought to consider the physical, social, natural, symbolic, and care environment in relation to housing design, dwelling location, and the neighbourhood context for improved housing outcomes. An integrated housing design and development framework is presented. It is hoped this practical matrix/evaluative tool will inform future inclusive housing design and development decisions in Australia and internationally. The application of this framework is especially relevant to political climates striving to achieve design innovation to increase housing choice for people with complex disability

    A Type 2C Protein Phosphatase FgPtc3 Is Involved in Cell Wall Integrity, Lipid Metabolism, and Virulence in Fusarium graminearum

    Get PDF
    Type 2C protein phosphatases (PP2Cs) play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8) exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum

    Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by <it>ERBB2</it> (<it>HER-2/neu</it>) oncogene expression.</p> <p>Results</p> <p>The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of <it>ERBB2</it>-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of <it>ERBB2</it>. The relative expression balance between AS variants from 3 genes was differentially modulated by <it>ERBB2</it> in this model system.</p> <p>Conclusions</p> <p>In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts that were differently modulated by <it>ERBB2</it>-mediated expression and that can be tested as molecular markers for breast cancer. Such a methodology will be useful for completely deciphering the cancer cell transcriptome diversity resulting from AS and for finding more precise molecular markers.</p

    Gene Expression Profile of Neuronal Progenitor Cells Derived from hESCs: Activation of Chromosome 11p15.5 and Comparison to Human Dopaminergic Neurons

    Get PDF
    BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs) into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS). Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons

    Developmental Transcriptomic Features of the Carcinogenic Liver Fluke, Clonorchis sinensis

    Get PDF
    Clonorchis sinensis is the causative agent of the life-threatening disease endemic to China, Korea, and Vietnam. It is estimated that about 15 million people are infected with this fluke. C. sinensis provokes inflammation, epithelial hyperplasia, and periductal fibrosis in bile ducts, and may cause cholangiocarcinoma in chronically infected individuals. Accumulation of a large amount of biological information about the adult stage of this liver fluke in recent years has advanced our understanding of the pathological interplay between this parasite and its hosts. However, no developmental gene expression profiles of C. sinensis have been published. In this study, we generated gene expression profiles of three developmental stages of C. sinensis by analyzing expressed sequence tags (ESTs). Complementary DNA libraries were constructed from the adult, metacercaria, and egg developmental stages of C. sinensis. A total of 52,745 ESTs were generated and assembled into 12,830 C. sinensis assembled EST sequences, and then these assemblies were further categorized into groups according to biological functions and developmental stages. Most of the genes that were differentially expressed in the different stages were consistent with the biological and physical features of the particular developmental stage; high energy metabolism, motility and reproduction genes were differentially expressed in adults, minimal metabolism and final host adaptation genes were differentially expressed in metacercariae, and embryonic genes were differentially expressed in eggs. The higher expression of glucose transporters, proteases, and antioxidant enzymes in the adults accounts for active uptake of nutrients and defense against host immune attacks. The types of ion channels present in C. sinensis are consistent with its parasitic nature and phylogenetic placement in the tree of life. We anticipate that the transcriptomic information on essential regulators of development, bile chemotaxis, and physico-metabolic pathways in C. sinensis that presented in this study will guide further studies to identify novel drug targets and diagnostic antigens

    RNA-Seq Analyses Generate Comprehensive Transcriptomic Landscape and Reveal Complex Transcript Patterns in Hepatocellular Carcinoma

    Get PDF
    RNA-seq is a powerful tool for comprehensive characterization of whole transcriptome at both gene and exon levels and with a unique ability of identifying novel splicing variants. To date, RNA-seq analysis of HBV-related hepatocellular carcinoma (HCC) has not been reported. In this study, we performed transcriptome analyses for 10 matched pairs of cancer and non-cancerous tissues from HCC patients on Solexa/Illumina GAII platform. On average, about 21.6 million sequencing reads and 10.6 million aligned reads were obtained for samples sequenced on each lane, which was able to identify >50% of all the annotated genes for each sample. Furthermore, we identified 1,378 significantly differently expressed genes (DEGs) and 24, 338 differentially expressed exons (DEEs). Comprehensive function analyses indicated that cell growth-related, metabolism-related and immune-related pathways were most significantly enriched by DEGs, pointing to a complex mechanism for HCC carcinogenesis. Positional gene enrichment analysis showed that DEGs were most significantly enriched at chromosome 8q21.3–24.3. The most interesting findings were from the analysis at exon levels where we characterized three major patterns of expression changes between gene and exon levels, implying a much complex landscape of transcript-specific differential expressions in HCC. Finally, we identified a novel highly up-regulated exon-exon junction in ATAD2 gene in HCC tissues. Overall, to our best knowledge, our study represents the most comprehensive characterization of HBV-related HCC transcriptome including exon level expression changes and novel splicing variants, which illustrated the power of RNA-seq and provided important clues for understanding the molecular mechanisms of HCC pathogenesis at system-wide levels
    • …
    corecore