114 research outputs found

    Expanding the phenotype of anauxetic dysplasia caused by biallelic NEPRO mutations:A case report

    Get PDF
    The cartilage hair hypoplasia and anauxetic dysplasia (CHH-AD) spectrum encompasses a group of rare skeletal disorders, with anauxetic dysplasia (ANXD) at the most severe end of the spectrum. Biallelic variants in RMRP, POP1, and NEPRO (C3orf17) have previously been associated with the three currently recognized ANXD types. Generally, all types are characterized by severe short stature, brachydactyly, skin laxity, joint hypermobility and dislocations, and extensive skeletal abnormalities visible on radiological evaluation. Thus far, only five patients with type 3 anauxetic dysplasia (ANXD3) have been reported. Here, we describe one additional ANXD3 patient. We provide a detailed physical and radiological evaluation of this patient, in whom we identified a homozygous variant, c.280C &gt; T, p.(Arg94Cys), in NEPRO. Our patient presented with clinically relevant features not previously described in ANXD3: atlantoaxial subluxation, extensive dental anomalies, and a sagittal suture craniosynostosis resulting in scaphocephaly. We provide an overview of the literature on ANXD3 and discuss our patient's characteristics in the context of previously described patients. This study expands the phenotypic spectrum of ANXD, particularly ANXD3. Greater awareness of the possibility of atlantoaxial subluxation, dental anomalies, and craniosynostosis may lead to more timely diagnosis and treatment.</p

    Validation of New Gene Variant Classification Methods:a Field-Test in Diagnostic Cardiogenetics

    Get PDF
    Background: In the molecular genetic diagnostics of Mendelian disorders, solutions are needed for the major challenge of dealing with the large number of variants of uncertain significance (VUSs) identified using next-generation sequencing (NGS). Recently, promising approaches using constraint metrics to calculate case excess scores (CE), etiological fractions (EF), and gnomAD-derived constraint scores have been reported that estimate the likelihood of rare variants in specific genes or regions that are pathogenic. Our objective is to study the usability of these constraint data into variant interpretation in a diagnostic setting, using our cardiomyopathy cohort. Methods and Results: Patients (N = 2002) referred for clinical genetic diagnostics underwent NGS testing of 55–61 genes associated with cardiomyopathies. Previously classified likely pathogenic (LP) and pathogenic (P) variants were used to validate the use of data from CE, EF, and gnomAD constraint analyses for (re)classification of associated variant types in specific cardiomyopathy subtype-related genes. The classifications corroborated in 94% (354/378) of cases. Next, we reclassified 23 unique VUSs to LP, increasing the diagnostic yield by 1.2%. In addition, 106 unique VUSs (5.3% of patients) were prioritized for co-segregation or functional analyses. Conclusions: Our analysis confirms that the use of constraint metrics data can improve variant interpretation, and we, therefore, recommend using constraint scores on other cohorts and disorders and its inclusion in variant interpretation protocols

    Prevalence and Prognostic Impact of Pathogenic Variants in Patients With Dilated Cardiomyopathy Referred for Ventricular Tachycardia Ablation

    Get PDF
    OBJECTIVES This study aimed to assess the frequency of (likely) pathogenic variants (LP/Pv) among dilated cardiomyopathy (DCM) ventricular tachycardia (VT) patients referred for CA and their impact on procedural outcome and long-term prognosis. BACKGROUND The prevalence of genetic variants associated with monomorphic VT among DCM is unknown. METHODS Ninety-eight consecutive patients (age 56 +/- 15 years; 84% men, left ventricular ejection fraction [LVEF] 39 12%) referred for DCM-VT ablation were included. Patients underwent electroanatomical mapping and testing of >= 55 cardiomyopathy-related genes. Mapping data were analyzed for low-voltage areas and abnormal potentials. LP/Pv-positive (LP/Pv+) patients were compared with LP/Pv-negative (LP/Pv-) patients and followed for VT recurrence and mortality. RESULTS In 37 (38%) patients, LP/Pv were identified, most frequently LMNA (n = 11 of 37, [30%]), 17N (n = 6 of 37, [16%]), PLN (n = 6 of 37, [16%]), SCN5A (n = 3 of 37, [8%]), RBM20 (n = 2 of 37, [5%]) and DSP (n = 2 of 37, [5%]). LP/Pv+ carriers had tower LVEF (35 + 13% vs. LP/Pv-: 42 11%; p 0.005) and were less often men (n 27 [73%] vs. n 55 [90%] p 0.03). After a median follow-up of 2.4 years (interquartile range: 0.9 to 4.4 years), 63 (64%) patients had VT recurrence (LP/Pv+: 30 of 37 [81%] vs. LP/Pv-: 33 of 61 [54%]; p = 0.007). Twenty-eight patients (29%) died (LP/Pv +: 19 of 37 [51%] vs. LP/Pv-: 9 of 61 [15%]; p <0.001). The cumulative 2-year VT-free survival was 41% in the total cohort (LP/Pv+: 16% vs. LP/Pv-: 54%; p 0.001). The presence of LP/Pv (hazard ratio: 1.9; 95% confidence interval: 1.1 to 3.4; p = 0.02) and unipolar low-voltage area size/cm(2) increase (hazard ratio: 2.5; 95% confidence interval: 1.6 to 4.0; p <0.001) were associated with a decreased 2-year VT-free survival. CONCLUSIONS In patients with DCM-VT, a genetic cause is frequently identified. LP/Pv+ patients have a tower LVEF and more extensive VT substrates, which, in combination with disease progression, may contribute to the poor prognosis. Genetic testing in patients with DCM-VT should therefore be recommended. (C) 2020 by the American College of Cardiology Foundation

    CoNVaDING:Single Exon Variation Detection in Targeted NGS Data

    Get PDF
    We have developed a tool for detecting single exon copy number variations (CNVs) in targeted next-generation sequencing data: CoNVaDING (Copy Number Variation Detection In Next-generation sequencing Gene panels). CoNVaDING includes a stringent quality control metric, that excludes or flags low quality exons. Since this quality control shows exactly which exons can be reliably analysed and which exons are in need of an alternative analysis method, CoNVaDING is not only useful for CNV detection in a research setting, but also in clinical diagnostics. During the validation phase, CoNVaDING detected all known CNVs in high quality targets in 320 samples analysed, giving 100% sensitivity and 99.998% specificity for 308,574 exons. CoNVaDING outperforms existing tools by exhibiting a higher sensitivity and specificity and by precisely identifying low-quality samples and regions. This article is protected by copyright. All rights reserved.</p

    Functional investigation of two simultaneous or separately segregating DSP variants within a single family support the theory of a dose-dependent disease severity

    Get PDF
    Desmoplakin (DP) is an important component of desmosomes, essential in cell-cell connecting structures in stress-bearing tissues. Over many hundreds of pathogenic variants in DSP have been associated with different cutaneous and cardiac phenotypes or a combination, known as a cardiocutaneous syndrome. Of less than 5% of the reported DSP variants, the effect on the protein has been investigated. Here, we describe and have performed RNA, protein and tissue analysis in a large family where DSPc.273+5G>A/c.6687delA segregated with palmoplantar keratoderma (PPK), woolly hair and lethal cardiomyopathy, while DSPWT/c.6687delA segregated with PPK and milder cardiomyopathy. hiPSC-derived cardiomyocytes and primary keratinocytes from carriers were obtained for analysis. Unlike the previously reported nonsense variants in the last exon of DSP that bypassed the nonsense-mediated mRNA surveillance system leading to protein truncation, variant c.6687delA was shown to cause loss of protein expression. Patients carrying both variants and having a considerably more severe phenotype were shown to have 70% DP protein reduction, while patients carrying only c.6687delA had 50% protein reduction and a milder phenotype. Analysis of RNA from patient cells did not show any splicing effect of the c.273+5G>A variant. However, a minigene splicing assay clearly showed alternative spliced transcripts originating from this variant. This study shows the importance of RNA and protein analyses to pinpoint the exact effect of DSP variants instead of solely relying on predictions. In addition, the particular pattern of inheritance, with simultaneous or separately segregating DSP variants within the same family, strongly supports the theory of a dose-dependent disease severity

    Diagnostic yield of targeted next generation sequencing in 2002 Dutch cardiomyopathy patients

    Get PDF
    BACKGROUND: Next-generation sequencing (NGS) is increasingly used for clinical evaluation of cardiomyopathy patients as it allows for simultaneous screening of multiple cardiomyopathy-associated genes. Adding copy number variant (CNV) analysis of NGS data is not routine yet and may contribute to the diagnostic yield. OBJECTIVES: Determine the diagnostic yield of our targeted NGS gene panel in routine clinical diagnostics of Dutch cardiomyopathy patients and explore the impact of exon CNVs on diagnostic yield. METHODS: Patients (N = 2002) referred for clinical genetic analysis underwent diagnostic testing of 55-61 genes associated with cardiomyopathies. Samples were analyzed and evaluated for single nucleotide variants (SNVs), indels and CNVs. CNVs identified in the NGS data and suspected of being pathogenic based on type, size and location were confirmed by additional molecular tests. RESULTS: A (likely) pathogenic (L)P variant was detected in 22.7% of patients, including 3 with CNVs and 25 where a variant was identified in a gene currently not associated with the patient's cardiomyopathy subtype. Only 15 out of 2002 patients (0.8%) were found to carry two (L)P variants. CONCLUSION: The yield of routine clinical diagnostics of cardiomyopathies was relatively low when compared to literature. This is likely due to the fact that our study reports the outcome of patients in daily routine diagnostics, therefore also including patients not fully fulfilling (subtype specific) cardiomyopathy criteria. This may also explain why (L)P variants were identified in genes not associated with the reported subtype. The added value of CNV analysis was shown to be limited but not negligible

    Relevance of Titin Missense and Non-Frameshifting Insertions/Deletions Variants in Dilated Cardiomyopathy

    Get PDF
    Recent advancements in next generation sequencing (NGS) technology have led to the identification of the giant sarcomere gene, titin (TTN), as a major human disease gene. Truncating variants of TTN (TTNtv) especially in the A-band region account for 20% of dilated cardiomyopathy (DCM) cases. Much attention has been focused on assessment and interpretation of TTNtv in human disease; however, missense and non-frameshifting insertions/deletions (NFS-INDELs) are difficult to assess and interpret in clinical diagnostic workflow. Targeted sequencing covering all exons of TTN was performed on a cohort of 530 primary DCM patients from three cardiogenetic centres across Europe. Using stringent bioinformatic filtering, twenty-nine and two rare TTN missense and NFS-INDELs variants predicted deleterious were identified in 6.98% and 0.38% of DCM patients, respectively. However, when compared with those identified in the largest available reference population database, no significant enrichment of such variants was identified in DCM patients. Moreover, DCM patients and reference individuals had comparable frequencies of splice-region missense variants with predicted splicing alteration. DCM patients and reference populations had comparable frequencies of rare predicted deleterious TTN missense variants including splice-region missense variants suggesting that these variants are not independently causative for DCM. Hence, these variants should be classified as likely benign in the clinical diagnostic workflow, although a modifier effect cannot be excluded at this stage.Peer reviewe

    PROGNOSTIC IMPLICATION OF THE MITRAL VALVE TENTING GEOMETRY IN PATIENTS WITH DILATED CARDIOMYOPATHY: TRANSTHORACIC REAL-TIME 3D ECHOCARDIOGRAPHIC STUDY

    Get PDF
    BACKGROUND: The pathogenic phospholamban R14del mutation causes dilated and arrhythmogenic right ventricular cardiomyopathies and is associated with an increased risk of malignant ventricular arrhythmias and end-stage heart failure. We performed a multicentre study to evaluate mortality, cardiac disease outcome, and risk factors for malignant ventricular arrhythmias in a cohort of phospholamban R14del mutation carriers. METHODS AND RESULTS: Using the family tree mortality ratio method in a cohort of 403 phospholamban R14del mutation carriers, we found a standardized mortality ratio of 1.7 (95% confidence interval, 1.4-2.0) with significant excess mortality starting from the age of 25 years. Cardiological data were available for 295 carriers. In a median follow-up period of 42 months, 55 (19%) individuals had a first episode of malignant ventricular arrhythmias and 33 (11%) had an end-stage heart failure event. The youngest age at which a malignant ventricular arrhythmia occurred was 20 years, whereas for an end-stage heart failure event this was 31 years. Independent risk factors for malignant ventricular arrhythmias were left ventricular ejection fraction <45% and sustained or nonsustained ventricular tachycardia with hazard ratios of 4.0 (95% confidence interval, 1.9-8.1) and 2.6 (95% confidence interval, 1.5-4.5), respectively. CONCLUSIONS: Phospholamban R14del mutation carriers are at high risk for malignant ventricular arrhythmias and end-stage heart failure, with left ventricular ejection fraction <45% and sustained or nonsustained ventricular tachycardia as independent risk factors. High mortality and a poor prognosis are present from late adolescence. Genetic and cardiac screening is, therefore, advised from adolescence onwards
    • …
    corecore