968 research outputs found

    Perioperative Implication of the Endothelial Glycocalyx

    Get PDF
    The endothelial glycocalyx (EG) is a gel-like layer lining the luminal surface of healthy vascular endothelium. Recently, the EG has gained extensive interest as a crucial regulator of endothelial funtction, including vascular permeability, mechanotransduction, and the interaction between endothelial and circulating blood cells. The EG is degraded by various enzymes and reactive oxygen species upon pro-inflammatory stimulus. Ischemia-reperfusion injury, oxidative stress, hypervolemia, and systemic inflammatory response are responsible for perioperative EG degradation. Perioperative damage of the EG has also been demonstrated, especially in cardiac surgery. However, the protection of the EG and its association with perioperative morbidity needs to be elucidated in future studies. In this review, the present knowledge about EG and its perioperative implication is discussed from an anesthesiologist\u27s perspective

    A case of anemia caused by combined vitamin B12 and iron deficiency manifesting as short stature and delayed puberty

    Get PDF
    Anemia caused by vitamin B12 deficiency resulting from inadequate dietary intake is rare in children in the modern era because of improvements in nutritional status. However, such anemia can be caused by decreased ingestion or impaired absorption and/or utilization of vitamin B12. We report the case of an 18-year-old man with short stature, prepubertal sexual maturation, exertional dyspnea, and severe anemia with a hemoglobin level of 3.3 g/dL. He had a history of small bowel resection from 50 cm below the Treitz ligament to 5 cm above the ileocecal valve necessitated by midgut volvulus in the neonatal period. Laboratory tests showed deficiencies of both vitamin B12 and iron. A bone marrow examination revealed dyserythropoiesis and low levels of hemosiderin particles, and a cytogenetic study disclosed a normal karyotype. After treatment with parenteral vitamin B12 and elemental iron, both anemia and growth showed gradual improvement. This is a rare case that presented with short stature and delayed puberty caused by nutritional deficiency anemia in Korea

    Role of S5b/PSMD5 in Proteasome Inhibition Caused by TNF-α/NFκB in Higher Eukaryotes

    Get PDF
    SummaryThe ubiquitin-proteasome system is essential for maintaining protein homeostasis. However, proteasome dysregulation in chronic diseases is poorly understood. Through genome-wide cell-based screening using 5,500 cDNAs, a signaling pathway leading to NFκB activation was selected as an inhibitor of 26S proteasome. TNF-α increased S5b (HGNC symbol PSMD5; hereafter S5b/PSMD5) expression via NFκB, and the surplus S5b/PSMD5 directly inhibited 26S proteasome assembly and activity. Downregulation of S5b/PSMD5 abolished TNF-α-induced proteasome inhibition. TNF-α enhanced the interaction of S5b/PSMD5 with S7/PSMC2 in nonproteasome complexes, and interference of this interaction rescued TNF-α-induced proteasome inhibition. Transgenic mice expressing S5b/PSMD5 exhibited a reduced life span and premature onset of aging-related phenotypes, including reduced proteasome activity in their tissues. Conversely, S5b/PSMD5 deficiency in Drosophila melanogaster ameliorated the tau rough eye phenotype, enhanced proteasome activity, and extended the life span of tau flies. These results reveal the critical role of S5b/PSMD5 in negative regulation of proteasome by TNF-α/NFκB and provide insights into proteasome inhibition in human disease

    The uncalibrated pulse contour cardiac output during off-pump coronary bypass surgery: performance in patients with a low cardiac output status and a reduced left ventricular function

    Get PDF
    BACKGROUND: We compared the continuous cardiac index measured by the FloTrac/Vigileo™ system (FCI) to that measured by a pulmonary artery catheter (CCI) with emphasis on the accuracy of the FCI in patients with a decreased left ventricular ejection fraction (LVEF) and a low cardiac output status during off-pump coronary bypass surgery (OPCAB). We also assessed the influence of several factors affecting the pulse contour, such as the mean arterial pressure (MAP), the systemic vascular resistance index (SVRI) and the use of norepinephrine. METHODS: Fifty patients who were undergoing OPCAB (30 patients with a LVEF ≥ 40%, 20 patients with a LVEF < 40%) were enrolled. The FCI and CCI were measured and we performed a Bland-Altman analysis. Subgroup analyses were done according to the LVEF (< 40%), the CCI (≤ 2.4 L/min/m), the MAP (60-80 mmHg), the SVRI (1,600-2,600 dyne/s/cm(5)/m(2)) and the use of norepinephrine. RESULTS: The FCI was reliable at all the time points of measurement with an overall bias and limit of agreement of -0.07 and 0.67 L/min/m(2), respectively, resulting in a percentage error of 26.9%. The percentage errors in the patients with a decreased LVEF and in a low cardiac output status were 28.2% and 22.3%, respectively. However, the percentage error in the 91 data pairs outside the normal range of the SVRI was 40.2%. CONCLUSIONS: The cardiac output measured by the FloTrac/Vigileo™ system was reliable even in patients with a decreased LVEF and in a low cardiac output status during OPCAB. Acceptable agreement was also noted during the period of heart displacement and grafting of the obtuse marginalis branch.ope

    Solubility enhancement of aggregation-prone heterologous proteins by fusion expression using stress-responsive Escherichia coli protein, RpoS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most efficient method for enhancing solubility of recombinant proteins appears to use the fusion expression partners. Although commercial fusion partners including maltose binding protein and glutathione-<it>S</it>-transferase have shown good performance in enhancing the solubility, they cannot be used for the proprietory production of commercially value-added proteins and likely cannot serve as universal helpers to solve all protein solubility and folding issues. Thus, novel fusion partners will continue to be developed through systematic investigations including proteome mining presented in this study.</p> <p>Results</p> <p>We analyzed the <it>Escherichia coli </it>proteome response to the exogenous stress of guanidine hydrochloride using 2-dimensional gel electrophoresis and found that RpoS (RNA polymerase sigma factor) was significantly stress responsive. While under the stress condition the total number of soluble proteins decreased by about 7 %, but a 6-fold increase in the level of RpoS was observed, indicating that RpoS is a stress-induced protein. As an N-terminus fusion expression partner, RpoS increased significantly the solubility of many aggregation-prone heterologous proteins in <it>E. coli </it>cytoplasm, indicating that RpoS is a very effective solubility enhancer for the synthesis of many recombinant proteins. RpoS was also well suited for the production of a biologically active fusion mutant of <it>Pseudomonas putida </it>cutinase.</p> <p>Conclusion</p> <p>RpoS is highly effective as a strong solubility enhancer for aggregation-prone heterologous proteins when it is used as a fusion expression partner in an <it>E. coli </it>expression system. The results of these findings may, therefore, be useful in the production of other biologically active industrial enzymes, as successfully demonstrated by cutinase.</p

    Efficacy and Safety of Human Placental Extract Solution on Fatigue: A Double-Blind, Randomized, Placebo-Controlled Study

    Get PDF
    Introduction. Fatigue is a common symptom, but only a few effective treatments are available. This study was conducted to assess the efficacy and safety of the human placental extract solution, which has been known to have a fatigue recovery effect. Methods. A total of 315 subjects were randomly assigned to three groups: group 1 (with Unicenta solution administration), group 2 (with exclusively human placental extract administration, excluding other ingredients from the Unicenta solution), and the placebo group. Subsequently, solutions were administered for four weeks. Results. The fatigue recovery rate was 71.00% in group 1, 71.72% in group 2, and 44.21% in the placebo group, which show statistically significant differences between the group 1 and the placebo group (P value = 0.0002), and between group 2 and the placebo group (P value = 0.0001). Conclusion. The human placental extract solution was effective in the improvement of fatigue

    Potential role and mechanism of IFN-gamma inducible protein-10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rheumatoid arthritis

    Get PDF
    Introduction IFN-gamma inducible protein-10 (CXCL10), a member of the CXC chemokine family, and its receptor CXCR3 contribute to the recruitment of T cells from the blood stream into the inflamed joints and have a crucial role in perpetuating inflammation in rheumatoid arthritis (RA) synovial joints. Recently we showed the role of CXCL10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in an animal model of RA and suggested the contribution to osteoclastogenesis. We tested the effects of CXCL10 on the expression of RANKL in RA synoviocytes and T cells, and we investigated which subunit of CXCR3 contributes to RANKL expression by CXCL10. Methods Synoviocytes derived from RA patients were kept in culture for 24 hours in the presence or absence of TNF-α. CXCL10 expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR) of cultured synoviocytes. Expression of RANKL was measured by RT-PCR and western blot in cultured synoviocytes with or without CXCL10 and also measured in Jurkat/Hut 78 T cells and CD4+ T cells in the presence of CXCL10 or dexamethasone. CXCL10 induced RANKL expression in Jurkat T cells was tested upon the pertussis toxin (PTX), an inhibitor of Gi subunit of G protein coupled receptor (GPCR). The synthetic siRNA for Gαi2 was used to knock down gene expression of respective proteins. Results CXCL10 expression in RA synoviocytes was increased by TNF-α. CXCL10 slightly increased RANKL expression in RA synoviocytes, but markedly increased RANKL expression in Jurkat/Hut 78 T cell or CD4+ T cell. CXCL10 augmented the expression of RANKL by 62.6%, and PTX inhibited both basal level of RANKL (from 37.4 ± 16.0 to 18.9 ± 13.0%) and CXCL10-induced RANKL expression in Jurkat T cells (from 100% to 48.6 ± 27.3%). Knock down of Gαi2 by siRNA transfection, which suppressed the basal level of RANKL (from 61.8 ± 17.9% to 31.1 ± 15.9%) and CXCL10-induced RANKL expression (from 100% to 53.1 ± 27.1%) in Jurkat T cells, is consistent with PTX, which inhibited RANKL expression. Conclusions CXCL10 increased RANKL expression in CD4+ T cells and it was mediated by Gαi subunits of CXCR3. These results indicate that CXCL10 may have a potential role in osteoclastogenesis of RA synovial tissue and subsequent joint erosion
    corecore