1,226 research outputs found

    Phosphorylation of Histone H2A.X in Peripheral Blood Mononuclear Cells May Be a Useful Marker for Monitoring Cardiometabolic Risk in Nondiabetic Individuals

    Get PDF
    Phosphorylation of H2A.X (serine 139) in the histone H2A family located in the downstream of the DNA damage kinase signaling cascade is an important indicator of DNA damage. Recently, phosphorylation of H2A.X was proposed as a sensitive biomarker of aging. This study investigated if phosphorylation of H2A.X in peripheral blood mononuclear cells (PBMCs) is associated with cardiometabolic risk in nondiabetic individuals. Basic parameters and oxidative stress/inflammatory markers were measured in nondiabetic healthy Koreans (n = 119). Phosphorylation of H2A.X was measured randomly among the study subjects using a flow cytometer. According to the number of metabolic syndrome risk factor (MetS-RF), the study subjects were subdivided into "super healthy" (MetS − RF = 0, n = 71) and "MetS-risk" (MetS − RF ≥ 1, n = 48) groups. Phosphorylation of H2A.X in PBMCs (percentages and mean fluorescence intensity) was significantly higher in the MetS-risk group than in the super healthy group after adjusting for age, sex, cigarette smoking, and alcohol consumption. Phosphorylated H2A.X was positively correlated with the number of MetS-RF as well as waist circumference, blood pressures, triglyceride, Hb A1C , oxidized LDL, high sensitivity C-reactive protein, tumor necrosis factor-alpha, and alanine aminotransferase after the adjustment. The present study suggested that phosphorylated H2A.X in circulating PBMCs measured by flow cytometer may be a useful marker for monitoring cardiometabolic risk in nondiabetic individuals

    Occupational exposures and genetic susceptibility to occupational exposures are related to sickness absence in the Lifelines cohort study

    Get PDF
    In this cross-sectional study, we investigated the association between occupational exposures and sickness absence (SA), the mediating role of respiratory symptoms, and whether genetic susceptibility to SA upon occupational exposures exists. Logistic regression was used to examine associations and structural equation modelling was used for mediation analyses. Genetic susceptibility was investigated by including interactions between occupational exposures and 11 candidate single nucleotide polymorphisms (SNPs). Biological dust, mineral dust, and pesticides exposure were associated with a lower prevalence of any SA (OR (95% CI) = 0.72 (0.58–0.89), 0.88 (0.78–0.99), and 0.70 (0.55–0.89), respectively) while gases/fumes exposure was associated with a higher prevalence of long-term SA (1.46 (1.11–1.91)). Subjects exposed to solvents and metals had a higher prevalence of any (1.14 (1.03–1.26) and 1.68 (1.26–2.24)) and long-term SA (1.26 (1.08–1.46) and 1.75 (1.15–2.67)). Chronic cough and chronic phlegm mediated the association between high gases/fumes exposure and long-term SA. Two of 11 SNPs investigated had a positive interaction with exposure on SA and one SNP negatively interacted with exposure on SA. Exposure to metals and gases/fumes showed a clear dose–response relationship with a higher prevalence of long-term SA; contrary, exposure to pesticides and biological/mineral dust showed a protective effect on any SA. Respiratory symptoms mediated the association between occupational exposures and SA. Moreover, gene-by-exposure interactions exist

    Enhanced Water Splitting by Fe 2

    Get PDF
    The effect of TiO2 layer applied to the conventional Fe2O3/FTO photoanode to improve the photoelectrochemical performance was assessed from the viewpoint of the microstructure and energy band structure. Regardless of the location of the TiO2 layer in the photoanodes, that is, Fe2O3/TiO2/FTO or TiO2/Fe2O3/FTO, high performance was obtained when α-Fe2O3 and H-TiNT/anatase-TiO2 phases existed in the constituent Fe2O3 and TiO2 layers after optimized heat treatments. The presence of the Fe2O3 nanoparticles with high uniformity in the each layer of the Fe2O3/TiO2/FTO photoanode achieved by a simple dipping process seemed to positively affect the performance improvement by modifying the energy band structure to a more favorable one for efficient electrons transfer. Our current study suggests that the application of the TiO2 interlayer, together with α-Fe2O3 nanoparticles present in the each constituent layers, could significantly contribute to the performance improvement of the conventional Fe2O3 photoanode

    Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae.

    Get PDF
    addresses: College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.notes: PMCID: PMC3276559The rice blast fungus Magnaporthe oryzae is one of the most significant pathogens affecting global food security. To cause rice blast disease the fungus elaborates a specialised infection structure called an appressorium. Here, we report genome wide transcriptional profile analysis of appressorium development using next generation sequencing (NGS). We performed both RNA-Seq and High-Throughput SuperSAGE analysis to compare the utility of these procedures for identifying differential gene expression in M. oryzae. We then analysed global patterns of gene expression during appressorium development. We show evidence for large-scale gene expression changes, highlighting the role of autophagy, lipid metabolism and melanin biosynthesis in appressorium differentiation. We reveal the role of the Pmk1 MAP kinase as a key global regulator of appressorium-associated gene expression. We also provide evidence for differential expression of transporter-encoding gene families and specific high level expression of genes involved in quinate uptake and utilization, consistent with pathogen-mediated perturbation of host metabolism during plant infection. When considered together, these data provide a comprehensive high-resolution analysis of gene expression changes associated with cellular differentiation that will provide a key resource for understanding the biology of rice blast disease

    Mouse Sphingosine Kinase 1a Is Negatively Regulated through Conventional PKC-Dependent Phosphorylation at S373 Residue

    Get PDF
    Sphingosine kinase is a lipid kinase that converts sphingosine into sphingosine-1-phosphate, an important signaling molecule with intracellular and extracellular functions. Although diverse extracellular stimuli influence cellular sphingosine kinase activity, the molecular mechanisms underlying its regulation remain to be clarified. In this study, we investigated the phosphorylation-dependent regulation of mouse sphingosine kinase (mSK) isoforms 1 and 2. mSK1a was robustly phosphorylated in response to extracellular stimuli such as phorbol ester, whereas mSK2 exhibited a high basal level of phosphorylation in quiescent cells regardless of agonist stimulation. Interestingly, phorbol ester-induced phosphorylation of mSK1a correlated with suppression of its activity. Chemical inhibition of conventional PKCs (cPKCs) abolished mSK1a phosphorylation, while overexpression of PKC alpha, a cPKC isoform, potentiated the phosphorylation, in response to phorbol ester. Furthermore, an in vitro kinase assay showed that PKC alpha directly phosphorylated mSK1a. In addition, phosphopeptide mapping analysis determined that the S373 residue of mSK1a was the only site phosphorylated by cPKC. Interestingly, alanine substitution of S373 made mSK1a refractory to the inhibitory effect of phorbol esters, whereas glutamate substitution of the same residue resulted in a significant reduction in mSK1a activity, suggesting the significant role of this phosphorylation event. Taken together, we propose that mSK1a is negatively regulated through cPKC-dependent phosphorylation at S373 residueopen

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)

    Exploring Cell Tropism as a Possible Contributor to Influenza Infection Severity

    Get PDF
    Several mechanisms have been proposed to account for the marked increase in severity of human infections with avian compared to human influenza strains, including increased cytokine expression, poor immune response, and differences in target cell receptor affinity. Here, the potential effect of target cell tropism on disease severity is studied using a mathematical model for in-host influenza viral infection in a cell population consisting of two different cell types. The two cell types differ only in their susceptibility to infection and rate of virus production. We show the existence of a parameter regime which is characterized by high viral loads sustained long after the onset of infection. This finding suggests that differences in cell tropism between influenza strains could be sufficient to cause significant differences in viral titer profiles, similar to those observed in infections with certain strains of influenza A virus. The two target cell mathematical model offers good agreement with experimental data from severe influenza infections, as does the usual, single target cell model albeit with biologically unrealistic parameters. Both models predict that while neuraminidase inhibitors and adamantanes are only effective when administered early to treat an uncomplicated seasonal infection, they can be effective against more severe influenza infections even when administered late
    corecore