2,019 research outputs found
Naphthalimide Trifluoroacetyl Acetonate: A Hydrazine-Selective Chemodosimetric Sensor
The trifluoroacetyl acetonate naphthalimide derivative 1 has been synthesized in good yield. In acetonitrile solution, compound 1 reacts selectively with hydrazine (NH2NH2) to give a five-membered ring. This leads to OFF-ON fluorescence with a maximum intensity at 501 nm as well as easily discernible color changes. Based on a readily discernible and reproducible 3.9% change in overall fluorescence intensity, the limit of detection for 1 is 3.2 ppb (0.1 mu M), which is below the accepted limit for hydrazine set by the U.S. Environmental Protection Agency (EPA). Compound 1 is selective for hydrazine over other amines, including NH4OH, NH2OH, ethylenediamine, methylamine, n-butylamine, piperazine, dimethylamine, triethylamine, pyridine, and is not perturbed by environmentally abundant metal ions. When supported on glass-backed silica gel TLC plates, compound 1 acts as a fluorimetric and colorimetric probe for hydrazine vapor at a partial pressure of 9.0 mm Hg, with selectivity over other potentially interfering volatile analytes, including ammonia, methylamine, n-butylamine, formaldehyde, acetaldehyde, H2O2, HCl, and CO2 being observed. Probe 1 can also be used for the detection of hydrazine in HeLa cells and does so without appreciable interference from other biologically abundant amines and metal ions.U.S. National Science Foundation CHE-1057904Robert A. Welch Foundation F-1018CRI project grant from National Research Foundation of Korea (NRF)Korea government (MSIP) 2009-0081566Chemistr
Parent-Reported Symptoms of Attention Deficit Hyperactivity Disorder in Children with Intermittent Exotropia before and after Strabismus Surgery
∙ The authors have no financial conflicts of interest. © Copyright: Yonsei University College of Medicine 2012 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens
Development of carbon-based adsorbent for separation of impurities such as siloxane and ammonia from land-fill gas
Land-fill gas or bio-gas is composed of large portion of methane and carbon dioxide, and small amount of impurities such as nitrogen, oxygen, hydrogen sulfide, siloxane and ammonia. These gases can be used as a gas-fuel after upgrading treatment. For the application of the land-fill gas and bio-gas as a fuel, we developed highly-performing carbon-based adsorbent which can separate siloxane and ammonia residue from these gases. It was quite necessary to consider the chemical properties of siloxane and ammonia for development of suitable adsorbent of each component. The siloxane can be polymerized in acidic or basic condition to form bulkier species which causes adsorbent deactivation and difficult regeneration. The ammonia gas is well known as basic molecules which have strong affinity to acidic species. In these reasons, we prepared neutral carbon materials by various methods for siloxane adsorption. In addition, we developed carbon-based basic ammonia-adsorbent by simple methods such as the chemical treatment of commercial activated carbon or the impregnation of organic molecules into the activated carbon. And then, adsorption-desorption isotherms and breakthrough curve of siloxane and ammonia were measured for thus synthesized adsorbents. Detail results for synthesis and the adsorption measurement of the studied adsorbents will be presented in the conference
Calcium Uptake and Release through Sarcoplasmic Reticulum in the Inferior Oblique Muscles of Patients with Inferior Oblique Overaction
We characterized and compared the characteristics of Ca2+ movements through the sarcoplasmic reticulum of inferior oblique muscles in the various conditions including primary inferior oblique overaction (IOOA), secondary IOOA, and controls, so as to further understand the pathogenesis of primary IOOA. Of 15 specimens obtained through inferior oblique myectomy, six were from primary IOOA, 6 from secondary IOOA, and the remaining 3 were controls from enucleated eyes. Ryanodine binding assays were performed, and Ca2+ uptake rates, calsequestrins and SERCA levels were determined. Ryanodine bindings and sarcoplasmic reticulum Ca2+ uptake rates were significantly decreased in primary IOOA (p<0.05). Western blot analysis conducted to quantify calsequestrins and SERCA, found no significant difference between primary IOOA, secondary IOOA, and the controls. Increased intracellular Ca2+ concentration due to reduced sarcoplasmic reticulum Ca2+ uptake may play a role in primary IOOA
Atomic Arrangements of Graphene-like ZnO
ZnO, which can exist in various dimensions such as bulk, thin films, nanorods, and quantum dots, has interesting physical properties depending on its dimensional structures. When a typical bulk wurtzite ZnO structure is thinned to an atomic level, it is converted into a hexagonal ZnO layer such as layered graphene. In this study, we report the atomic arrangement and structural merging behavior of graphene-like ZnO nanosheets transferred onto a monolayer graphene using aberration-corrected TEM. In the region to which an electron beam is continuously irradiated, it is confirmed that there is a directional tendency, which is that small-patched ZnO flakes are not only merging but also forming atomic migration of Zn and O atoms. This study suggests atomic alignments and rearrangements of the graphene-like ZnO, which are not considered in the wurtzite ZnO structure. In addition, this study also presents a new perspective on the atomic behavior when a bulk crystal structure, which is not an original layered structure, is converted into an atomic-thick layered two-dimensional structure
Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1
Cancer therapeutics: Extending a drug's reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity
Treatment of Branch Retinal Artery Occlusion With Transluminal Nd:YAG Laser Embolysis
The purpose of this paper was to report a successful treatment of transluminal Nd:YAG laser embolysis (NYE) for branch retinal artery occlusion (BRAO) with visible emboli. Two patients with acute, severe vision loss secondary to a branch retinal artery occlusion with visible emboli in one eye underwent NYE. A complete ocular examination was performed which included biomicroscopy of the posterior pole of the retina, intraocular pressure measurement, fundus color photographs, and fluorescein angiography (FA). After the NYE, the two patients showed dramatic improvements in best-corrected visual acuity, as well as, immediate and dramatic restorations in flow past the obstructed arteriole in FA. NYE is a treatment modality to be considered in patients with BRAO who present acutely with severe vision loss and a visible embolus
- …