981 research outputs found

    Parent-Reported Symptoms of Attention Deficit Hyperactivity Disorder in Children with Intermittent Exotropia before and after Strabismus Surgery

    Get PDF
    ∙ The authors have no financial conflicts of interest. © Copyright: Yonsei University College of Medicine 2012 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens

    Transcriptional changes in the developing rice seeds under salt stress suggest targets for manipulating seed quality

    Get PDF
    Global sea-level rise, the effect of climate change, poses a serious threat to rice production owing to saltwater intrusion and the accompanying increase in salt concentration. The reclaimed lands, comprising 22.1% of rice production in Korea, now face the crisis of global sea-level rise and a continuous increase in salt concentration. Here, we investigated the relationship between the decrease in seed quality and the transcriptional changes that occur in the developing rice seeds under salt stress. Compared to cultivation on normal land, the japonica rice cultivar, Samgwang, grown on reclaimed land showed a greatly increased accumulation of minerals, including sodium, magnesium, potassium, and sulfur, in seeds and a reduced yield, delayed heading, decreased thousand grain weight, and decreased palatability and amylose content. Samgwang showed phenotypical sensitivity to salt stress in the developing seeds. Using RNA-seq technology, we therefore carried out a comparative transcriptome analysis of the developing seeds grown on reclaimed and normal lands. In the biological process category, gene ontology enrichment analysis revealed that the upregulated genes were closely associated with the metabolism of biomolecules, including amino acids, carboxylic acid, lignin, trehalose, polysaccharide, and chitin, and to stress responses. MapMan analysis revealed the involvement of upregulated genes in the biosynthetic pathways of abscisic acid and melatonin and the relationship of trehalose, raffinose, and maltose with osmotic stress. Interestingly, many seed storage protein genes encoding glutelins and prolamins were upregulated in the developing seeds under salt stress, indicating the negative effect of the increase of storage proteins on palatability. Transcription factors upregulated in the developing seeds under salt stress included, in particular, bHLH, MYB, zinc finger, and heat shock factor, which could act as potential targets for the manipulation of seed quality under salt stress. Our study aims to develop a useful reference for elucidating the relationship between seed response mechanisms and decreased seed quality under salt stress, providing potential strategies for the improvement of seed quality under salt stress

    Pig-to-Nonhuman Primate (NHP) Naked Islet Xenotransplantation

    Get PDF
    Islet transplantation is an established therapy for selected type 1 diabetes (T1D) patients with severe hypoglycemic unawareness and glycemic liability despite of insulin treatment. However, the donor organ is limited. Porcine islets are the best alternative source to overcome this limitation, and pig-to-nonhuman primate (NHP) naked islet xenotransplantation studies are being performed worldwide. Several studies including our own have presented successful proof-of-concept results based on immunosuppression regimen including the anti-CD154 monoclonal antibody. Particularly, long-term control of diabetes by adult porcine islet transplantation has been demonstrated in five consecutive monkeys, and the longest survival was ~1000 days after transplantation. Currently, pig-to-NHP islet xenotransplantation based on clinically applicable immunosuppression regimen is being pursued. In this chapter, we will describe all the procedures of pig-to-NHP naked islet xenotransplantation: (1) the porcine islet isolation from designated pathogen-free (DPF) miniature pigs, (2) diabetes induction in monkeys, (3) transplantation procedure via the portal vein, (4) immune monitoring comprising humoral and cellular immunity after porcine islet transplantation, and finally (5) liver biopsy and subsequent immunohistochemical procedure in detail

    Short-Term Effects of Ginkgo biloba Extract on Peripapillary Retinal Blood Flow in Normal Tension Glaucoma

    Get PDF
    PURPOSE: Based on the vascular theory of glaucoma pathogenesis, we wanted to evaluate the effect of Ginkgo biloba extract (GBE) on peripapillary blood flow in patients with normal tension glaucoma (NTG). METHODS: Thirty patients with NTG were randomly placed in the GBE-treated or control groups. The GBE-treated group received 80 mg GBE orally, twice a day for four weeks, and the control group received a placebo twice a day for four weeks. Complete ocular examinations including visual field, Heidelberg retina flowmeter, and systemic examinations were performed on the first study day and on the day treatment was completed. RESULTS: After GBE treatment, the mean blood flow, volume, and velocity increased at almost all points, and there was a statistically significant increase in blood flow at almost all points, in comparison to the placebo. Blood volume significantly increased only in the superior nasal and superior temporal neuroretinal rim areas. GBE also significantly increased blood velocity in areas of the inferior temporal neuroretinal rim and superior temporal peripapillary area. CONCLUSIONS: GBE administration appears to have desirable effect on ocular blood flow in NTG patients.ope

    Investigation of Enhanced Polygon Wall Boundary Model in PNU-MPS Method

    Get PDF
    With regard to demonstration of fluid flow, there are two descriptions which are Eulerian description and Lagrangian description. In the field of CFD (Computational Fluid Dynamics), a number of studies relevant to grid method based on Eulerian description have been conducted generally. However, when the grid method is employed to simulate flow field, it is inevitable to give consideration to convection term which generates severe numerical diffusion and fluctuation. To obtain the accuracy of solution, a different type of method based on Lagrangian description is come to the fore. Numerical approaches following Lagrangian description have been called meshfree or particle method. Even though particle method does not accompany convection term and fully satisfies conservation of mass, its studies have not been carried out extensively because it is difficult to implement the boundary conditions correctly due to insufficient number of particles in the vicinity of boundary. It affects directly the stability of flow field and accuracy in computation. In MPS (Moving Particle Semi-implicit) method [1], fixed-type of dummy particles are placed inside wall boundary. By placing extra particles as the wall, it seems to be not easy to satisfy the boundary condition for sharp-edged or extremely thin body configuration. In this study, the enhanced polygon wall boundary model, which was suggested originally by Mitsume et al. [2], is employed to the PNU-MPS (Pusan-National-University-modified MPS) method [3] to improve and stabilize the analysis of fluid flow with arbitrary-shaped body including sharp-edged body configuration without any additional particles. The developed simulation method, called as PNU-MPS-POLY, is adopted to the Couette flow and the lid-driven cavity flow with various corner angles. The present simulation results are validated through comparison with the analytic solutions, the experiments [4], and other simulation results [5,6]

    Proteomic and biochemical analyses reveal the activation of unfolded protein response, ERK-1/2 and ribosomal protein S6 signaling in experimental autoimmune myocarditis rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the molecular and cellular pathogenesis underlying myocarditis, we used an experimental autoimmune myocarditis (EAM)-induced heart failure rat model that represents T cell mediated postinflammatory heart disorders.</p> <p>Results</p> <p>By performing unbiased 2-dimensional electrophoresis of protein extracts from control rat heart tissues and EAM rat heart tissues, followed by nano-HPLC-ESI-QIT-MS, 67 proteins were identified from 71 spots that exhibited significantly altered expression levels. The majority of up-regulated proteins were confidently associated with unfolded protein responses (UPR), while the majority of down-regulated proteins were involved with the generation of precursor metabolites and energy metabolism in mitochondria. Although there was no difference in AKT signaling between EAM rat heart tissues and control rat heart tissues, the amounts and activities of extracellular signal-regulated kinase (ERK)-1/2 and ribosomal protein S6 (rpS6) were significantly increased. By comparing our data with the previously reported myocardial proteome of the Coxsackie viruses of group B (CVB)-mediated myocarditis model, we found that UPR-related proteins were commonly up-regulated in two murine myocarditis models. Even though only two out of 29 down-regulated proteins in EAM rat heart tissues were also dysregulated in CVB-infected rat heart tissues, other proteins known to be involved with the generation of precursor metabolites and energy metabolism in mitochondria were also dysregulated in CVB-mediated myocarditis rat heart tissues, suggesting that impairment of mitochondrial functions may be a common underlying mechanism of the two murine myocarditis models.</p> <p>Conclusions</p> <p>UPR, ERK-1/2 and S6RP signaling were activated in both EAM- and CVB-induced myocarditis murine models. Thus, the conserved components of signaling pathways in two murine models of acute myocarditis could be targets for developing new therapeutic drugs or methods aimed at treating enigmatic myocarditis.</p

    Research on How Emotional Expressions of Emotional Labor Workers and Perception of Customer Feedbacks Affect Turnover Intentions: Emphasis on Moderating Effects of Emotional Intelligence

    Get PDF
    Previous studies have used various external variables and parameters as well as moderator variables such as emotional intelligence have been to understand emotional labor and its related problems. However, a comprehensive model to study such variables’ correlations with each other and their overall effect on emotional labor has not yet been established. This study used a structural equation model to understand the relationship between employees’ expression of emotional labor and perception of customer feedbacks. The study also looked at how the perception of customer feedback affects emotional exhaustion in order to understand how emotional exhaustion affects job satisfaction and turnover intentions. Further, in order to fully understand the effects of emotion on emotional labor at the service contact points, this study developed and tested a model of emotional labor with four factors of emotional intelligence as moderating factors. Five hundred and seventy nine emotional labor workers in service industries in the United States were collected and 577 valid survey results have been analyzed. The result shows that there exists moderating effects of emotional intelligence on how employees’ Deep Acting and Surface Acting recognize customers’ reactions, both positive and negative, that would affect employees’ Emotional Exhaustion and Job Satisfaction, and hence, Turnover Intention. The result suggests that employees with better understanding of their own emotions, although they are more likely to recover from emotional exhaustion, experience a greater negative effect when there is a discrepancy between what they feel and how they should act
    corecore