518 research outputs found

    Cultural Practices to Reduce Cd Content in Edible Parts of Staple Crops in Korea

    Get PDF
    Objectives of this study were to determine the uptake and translocation of Cd in rice plant from soil with applying the water management and soil ameliorators and to investigate the correlations among heavy metal contents in the brown rice, soil pH and chemical species of Cd existing in soil by sequential extracting method with paddy soil contaminated with Cd near abandoned mine. To identify the effect of soil ameliorators on Cd uptake in rice plants, compost and lime were treated. Plants were grown with irrigation water concentrated by 0.01mg kg^ of cadmium in two soil types (sandy loam and clay loam) with treatments of intermittent irrigation and continuous submersion conditions. Compared to intermittent irrigation plots, average Eh value in the continuous submersion plots was low at 136.7mV whereas pH value was high at 0.3. Eh value was decreased in the treatment of soil ameliorator while pH value was increased by 0.2~0.3. Cd content of leaves and brown rice had significantly positive correlation with Eh value in soils while was negatively correlated with soil pH. At the harvest stage, Cd content in the leaves and brown rice was decreased in the continuous submersion plots by 30% relative to the intermittent irrigation plots. In case of soil ameliorator applied plots, Cd content of leaves and brown rice was lower by 35% than that of N, P, K fertilizer plots, respectively. Compared to the soil types, Cd content of leaves and brown rice in sandy loam soil was lower by 64 and 37% than that in clay loam soil, respectively. Order of reduction to Cd uptake was the compost and lime mixture plot>silicate plot>lime plot. However, the effect of Cd uptake reduction by soil ameliorator was decreased in the N, P, K+compost and N, P, K+phosphate plots. Cd uptake reduction by water management and soil ameliorator was more effective in the sandy loam soil than that in the clay loam soil.Special Revie

    GS2PATH: A web-based integrated analysis tool for finding functional relationships using gene ontology and biochemical pathway data

    Get PDF
    GS2PATH is a Web-based pipeline tool to permit functional enrichment of a given gene set from prior knowledge databases, including gene ontology (GO) database and biological pathway databases. The tool also provides an estimation of gene set enrichment, in GO terms, from the databases of the KEGG and BioCarta pathways, which may allow users to compute and compare functional over-representations. This is especially useful in the perspective of biological pathways such as metabolic, signal transduction, genetic information processing, environmental information processing, cellular process, disease, and drug development. It provides relevant images of biochemical pathways with highlighting of the gene set by customized colors, which can directly assist in the visualization of functional alteration

    CT Examinations for COVID-19: A Systematic Review of Protocols, Radiation Dose, and Numbers Needed to Diagnose and Predict

    Get PDF
    Purpose Although chest CT has been discussed as a first-line test for coronavirus disease 2019 (COVID-19), little research has explored the implications of CT exposure in the population. To review chest CT protocols and radiation doses in COVID-19 publications and explore the number needed to diagnose (NND) and the number needed to predict (NNP) if CT is used as a first-line test. Materials and Methods We searched nine highly cited radiology journals to identify studies discussing the CT-based diagnosis of COVID-19 pneumonia. Study-level information on the CT protocol and radiation dose was collected, and the doses were compared with each national diagnostic reference level (DRL). The NND and NNP, which depends on the test positive rate (TPR), were calculated, given a CT sensitivity of 94% (95% confidence interval [CI]: 91%–96%) and specificity of 37% (95% CI: 26%–50%), and applied to the early outbreak in Wuhan, New York, and Italy. Results From 86 studies, the CT protocol and radiation dose were reported in 81 (94.2%) and 17 studies (19.8%), respectively. Low-dose chest CT was used more than twice as often as standard-dose chest CT (39.5% vs.18.6%), while the remaining studies (44.2%) did not provide relevant information. The radiation doses were lower than the national DRLs in 15 of the 17 studies (88.2%) that reported doses. The NND was 3.2 scans (95% CI: 2.2–6.0). The NNPs at TPRs of 50%, 25%, 10%, and 5% were 2.2, 3.6, 8.0, 15.5 scans, respectively. In Wuhan, 35418 (TPR, 58%; 95% CI: 27710–56755) to 44840 (TPR, 38%; 95% CI: 35161–68164) individuals were estimated to have undergone CT examinations to diagnose 17365 patients. During the early surge in New York and Italy, daily NNDs changed up to 5.4 and 10.9 times, respectively, within 10 weeks. Conclusion Low-dose CT protocols were described in less than half of COVID-19 publications, and radiation doses were frequently lacking. The number of populations involved in a first-line diagnostic CT test could vary dynamically according to daily TPR; therefore, caution is required in future planning

    MDR-1 gene expression is a minor factor in determining the multidrug resistance phenotype of MCF7/ADR and KB-V1 cells

    Get PDF
    AbstractThe relevance of MDR-1 gene expression to the multidrug resistance phenotype was investigated. Drug-resistant cells, KB-V1 and MCF7/ADR, constantly expressed mRNA of the MDR-1 gene and were more resistant to vinblastine and adriamycin than drug-sensitive cells, KB-3–1 and MCF7. The drug efflux rate of KB-V1 was the same as KB-3–1 although the MDR-1 gene was expressed in only the resistant cell. The higher intracellular drug concentration of KB-3–1 than KB-V1 was due to the large drug influx. In the case of MCF7 and MCF7/ADR, the influx and efflux of the drug had nearly the same pattern and drug efflux was not affected by verapamil. The amount of ATP, cofactor of drug pumping activity of P-glycoprotein, was not changed by the resistance. These observations suggested that drug efflux mediated by MDR-1 gene expression was not a major determining factor of drug resistance in the present cell systems, and that the drug resistance could be derived from the change in drug uptake and other mechanisms

    Assessment of mGluR5 KO mice under conditions of low stress using a rodent touchscreen apparatus reveals impaired behavioural flexibility driven by perseverative responses

    Get PDF
    Genetic and pharmacological manipulations targeting metabotropic glutamate receptor 5 (mGluR5) affect performance in behavioural paradigms that depend on cognitive flexibility. Many of these studies involved exposing mice to highly stressful conditions including electric foot shocks or water immersion and forced swimming. Because mGluR5 is also implicated in resilience and stress responses, however, apparent impairments in inhibitory learning may have been an artifact of manipulation-induced changes in affective state. To address this, we present here a characterization of cognitive flexibility in mGluR5 knockout (KO) mice conducted with a rodent touchscreen cognitive assessment apparatus in which the animals experience significantly less stress. Our results indicate a significant reversal learning impairment relative to wild-type (WT) controls in the two-choice Visual Discrimination-Reversal (VDR) paradigm. Upon further analysis, we found that this deficit is primarily driven by a prolonged period of perseveration in the early phase of reversal. We also observed a similar perseveration phenotype in the KO mice in the Extinction (EXT) paradigm. In addition, mGluR5 KO mice show higher breakpoints in the touchscreen Progressive Ratio (PR) and altered decision making in the Effort-related Choice (ERC) tasks. Interestingly, this impairment in PR is an additional manifestation of an increased propensity to perseverate on the emission of relatively simplistic behavioural outputs. Together, these findings suggest that under conditions of low stress, mGluR5 KO mice exhibit a pronounced perseverative phenotype that blunts cognitive flexibility

    Cooperative protein structural dynamics of homodimeric hemoglobin linked to water cluster at subunit interface revealed by time-resolved X-ray solution scattering

    Get PDF
    Homodimeric hemoglobin (HbI) consisting of two subunits is a good model system for investigating the allosteric structural transition as it exhibits cooperativity in ligand binding. In this work, as an effort to extend our previous study on wild-type and F97Y mutant HbI, we investigate structural dynamics of a mutant HbI in solution to examine the role of well-organized interfacial water cluster, which has been known to mediate intersubunit communication in HbI. In the T72V mutant of HbI, the interfacial water cluster in the T state is perturbed due to the lack of Thr72, resulting in two less interfacial water molecules than in wild-type HbI. By performing picosecond time-resolved X-ray solution scattering experiment and kinetic analysis on the T72V mutant, we identify three structurally distinct intermediates (I1, I2, and I3) and show that the kinetics of the T72V mutant are well described by the same kinetic model used for wild-type and F97Y HbI, which involves biphasic kinetics, geminate recombination, and bimolecular CO recombination. The optimized kinetic model shows that the R-T transition and bimolecular CO recombination are faster in the T72V mutant than in the wild type. From structural analysis using species-associated difference scattering curves for the intermediates, we find that the T-like deoxy I3 intermediate in solution has a different structure from deoxy HbI in crystal. In addition, we extract detailed structural parameters of the intermediates such as E-F distance, intersubunit rotation angle, and heme-heme distance. By comparing the structures of protein intermediates in wild-type HbI and the T72V mutant, we reveal how the perturbation in the interfacial water cluster affects the kinetics and structures of reaction intermediates of HbI. © 2016 Author(s)1571sciescopu

    Classification of Benign/Malignant PNGGOs using K-means algorithm in MDCT Images: A Preliminary Study

    Get PDF
    Lung cancer is one of the most prevalent diseases in the world. Recently, PNGGOs (Pure nodular ground-glass opacity) have been reported to increasing aspect for all CT-detected pulmonary nodules. Moreover, the malignancy rate of PNGGOs is a considerable proportion of benign diseases. In this study, we have developed a computerized classification scheme of PNGGOs malignancy. Segmentation of PNGGOs was performed semi-automatically. After that, the histogram based statistical features and region based features of benign and malignant GGO was extracted. Finally, K-means classifier was applied. Experiment was performed employing 12 CT image sets and 91.67% of accuracy was achieved

    Automated volumetric segmentation method for computerized-diagnosis of pure nodular ground-glass opacity in high-resolution CT

    Get PDF
    While accurate diagnosis of pure nodular ground glass opacity (PNGGO) is important in order to reduce the number of unnecessary biopsies, computer-aided diagnosis of PNGGO is less studied than other types of pulmonary nodules (e.g., solid-type nodule). Difficulty in segmentation of GGO nodules is one of technical bottleneck in the development of CAD of GGO nodules. In this study, we propose an automated volumetric segmentation method for PNGGO using a modeling of ROI histogram with a Gaussian mixture. Our proposed method segments lungs and applies noise-filtering in the pre-processing step. And then, histogram of selected ROI is modeled as a mixture of two Gaussians representing lung parenchyma and GGO tissues. The GGO nodule is then segmented by region-growing technique that employs the histogram model as a probability density function of each pixel belonging to GGO nodule, followed by the elimination of vessel-like structure around the nodules using morphological image operations. Our results using a database of 26 cases indicate that the automated segmentation method have a promising potential

    Perfusion parameters as potential imaging biomarkers for the early prediction of radiotherapy response in a rat tumor model

    Get PDF
    PURPOSEWe aimed to compare various tumor-related radiologic morphometric changes and computed tomography (CT) perfusion parameters before and after treatment, and to determine the optimal imaging assessment technique for the prediction of early response in a rat tumor model treated with radiotherapy.METHODSAmong paired tumors of FN13762 murine breast cancer cells implanted bilaterally in the necks of eight Fischer rats, tumors on the right side were treated with a single 20 Gy dose of radiotherapy. Perfusion CT studies were performed on day 0 before radiotherapy, and on days 1 and 5 after radiotherapy. Variables based on the size, including the longest diameter, tumor area, and volume, were measured. Quantitative perfusion analysis was performed for the whole tumor volume and permeabilities and blood volumes (BVs) were obtained. The area under the curve (AUC) difference in the histograms of perfusion parameters and texture analyses of uniformity and entropy were quantified. Apoptotic cell density was measured on pathology specimens immediately after perfusion imaging on day 5.RESULTSOn day 1 after radiotherapy, differences in size between the irradiated and nonirradiated tumors were not significant. In terms of percent changes in the uniformity of permeabilities between tumors before irradiation and on day 1 after radiotherapy, the changes were significantly higher in the irradiated tumors than in the nonirradiated tumors (0.085 [−0.417, 0.331] vs. −0.131 [−0.536, 0.261], respectively; P = 0.042). The differences in AUCs of the histogram of voxel-by-voxel vascular permeability and BV in tumors between day 0 and day 1 were significantly higher in treated tumors compared with the control group (permeability, 21.4 [−2.2, 37.5] vs. 9.5 [−8.9, 33.8], respectively, P = 0.030; BV, 52.9 [−6186.0, 419.2] vs. 11.9 [−198.3, 346.7], respectively, P = 0.049). Apoptotic cell density showed a significantly positive correlation with the AUC difference of BV, the percent change of uniformity in permeability and BV (r=0.202, r=0.644, and r=0.706, respectively).CONCLUSIONBy enabling earlier tumor response prediction than morphometric evaluation, the histogram analysis of CT perfusion parameters appears to have a potential in providing prognostic predictive information in an irradiated rat model
    corecore