7,072 research outputs found
Singularities of the biextension metric for families of abelian varieties
In this paper we study the singularities of the invariant metric of the
Poincar\'e bundle over a family of abelian varieties and their duals over a
base of arbitrary dimension. As an application of this study we prove the
effectiveness of the height jump divisors for families of pointed abelian
varieties. The effectiveness of the height jump divisor was conjectured by Hain
in the more general case of variations of polarized Hodge structures of weight
.Comment: 54 pages, accepted for publication in Forum Math. Sigm
Robust audio indexing for Dutch spoken-word collections
AbstractāWhereas the growth of storage capacity is in accordance with widely acknowledged predictions, the possibilities to index and access the archives created is lagging behind. This is especially the case in the oral history domain and much of the rich content in these collections runs the risk to remain inaccessible for lack of robust search technologies. This paper addresses the history and development of robust audio indexing technology for searching Dutch spoken-word collections and compares Dutch audio indexing in the well-studied broadcast news domain with an oral-history case-study. It is concluded that despite significant advances in Dutch audio indexing technology and demonstrated applicability in several domains, further research is indispensable for successful automatic disclosure of spoken-word collections
Speech-based recognition of self-reported and observed emotion in a dimensional space
The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance
- ā¦