21 research outputs found

    Polybrominated diphenyl ether serum concentrations in a Californian population of children, their parents, and older adults: an exposure assessment study

    No full text
    BackgroundPolybrominated diphenyl ethers (PBDEs) are used as flame retardants in many household items. Given concerns over their potential adverse health effects, we identified predictors and evaluated temporal changes of PBDE serum concentrations.MethodsPBDE serum concentrations were measured in young children (2-8 years old; N = 67), parents of young children (<55 years old; N = 90), and older adults (≥55 years old; N = 59) in California, with concurrent floor wipe samples collected in participants' homes in 2008-2009. We also measured serum concentrations one year later in a subset of children (N = 19) and parents (N = 42).ResultsPBDE serum concentrations in children were significantly higher than in adults. Floor wipe concentration is a significant predictor of serum BDE-47, 99, 100 and 154. Positive associations were observed between the intake frequency of canned meat and serum concentrations of BDE-47, 99 and 154, between canned meat entrees and BDE-154 and 209, as well as between tuna and white fish and BDE-153. The model with the floor wipe concentration and food intake frequencies explained up to 40% of the mean square prediction error of some congeners. Lower home values and renting (vs. owning) a home were associated with higher serum concentrations of BDE-47, 99 and 100. Serum concentrations measured one year apart were strongly correlated as expected (r = 0.70-0.97) with a slight decreasing trend.ConclusionsFloor wipe concentration, food intake frequency, and housing characteristics can explain 12-40% of the prediction error of PBDE serum concentrations. Decreasing temporal trends should be considered when characterizing long-term exposure

    High-resolution mass spectrometry provides novel insights into products of human metabolism of organophosphate and brominated flame retardants

    No full text
    The high resolution, accurate mass, and fast scanning features of the Orbitrap™ mass spectrometer, combined with the separation power of ultrahigh-performance liquid chromatography were applied for the first time to study the metabolic profiles of several organic flame retardants (FRs) present in indoor dust. To mimic real-life exposure, in vitro cultured HepG2 human hepatocyte cell lines were exposed simultaneously to various FRs in an indoor dust extract for 24 h. Target parent FRs, hexabromocyclododecanes (α-, β-, and γ-HBCDs), tris-2-chloroethyl phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), were separated in a single run for the first time using alternating positive and negative heated ESI source. Further metabolite separation and identification was achieved using full scan (70,000 full width at half maximum (FWHM)), accurate mass (up to 1 ppm) spectrometry. Structural confirmation was performed via all ion fragmentation (AIF) spectra using the optional higher collisional dissociation (HCD) cell and MS/MS analysis. First insights into human metabolism of HBCDs revealed several hydroxylated and debrominated phase I metabolites, in addition to conjugated phase II glucuronides. Furthermore, various hydroxylated, oxidized, and conjugated metabolites of chlorinated phosphorous FRs were identified, leading to the suggestion of α-oxidation as a significant metabolic pathway for these compounds.</p
    corecore