140,602 research outputs found

    Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands

    Get PDF
    Acknowledgements This work contributes to the N-Circle project (grant number BB/N013484/1), and CINAg (BB/N013468/1) Virtual Joint Centres on Agricultural Nitrogen (funded by the Newton Fund via UK BBSRC/NERC), U-GRASS (grant number NE/M016900/1), the Belmont Forum/FACCE-JPI DEVIL project (grant number NE/M021327/1), Soils-R-GGREAT (grant number NE/P019455/1), ADVENT (grant number NE/M019713/1), SĂȘr Cymru LCEE-NRN project, Climate-Smart Grass and the Scottish Government’s Strategic Research Programme.Peer reviewedPublisher PD

    Search for synchrotron emission from secondary leptons in dense cold starless cores

    Full text link
    We report radio continuum observations with the Australia Telescope Compact Array of two molecular clouds. The impetus for these observations is a search for synchrotron radiation by cosmic ray secondary electrons/positrons in a region of enhanced density and possibly high magnetic field. We present modelling which shows that there should be an appreciable flux of synchrotron above the more diffuse, galactic synchrotron background. The starless core G333.125-0.562 and infrared source IRAS 15596-5301 were observed at 1384 and 2368 MHz. For G333.125-0.562, we find no significant levels of radio emission from this source at either frequency, nor any appreciable polarisation: we place an upper limit on the radio continuum flux from this source of 0.5 mJy per beam at both 1384 and 2368 MHz. Due to the higher than expected flux density limits, we also obtained archival ATCA data at 8640 MHz for this cloud and place an upper limit on the flux density of 50 micro-Jy per beam. Assuming the cosmic ray spectrum is similar to that near the Sun, and given the cloud's molecular density and mass, we place an upper limit on the magnetic field of 500 micro-G. IRAS 15596-5301, with an RMS of 50 micro-Jy per beam at 1384 MHz, shows an HII region consistent with optically thin free-free emission already detected at 4800 MHz. We use the same prescription as G333 to constrain the magnetic field from this cloud to be less than 500 micro-G. We find that these values are not inconsistent with the view that magnetic field values scale with the average density of the molecular cloud.Comment: 6 pages, 5 pdf figures, accepted for publication in PAS

    Global Entrepreneurship Monitor United Kingdom: 2007 Executive Report

    Get PDF
    This monitoring report compares Global Entrepreneurship Monitor (GEM) measures of entrepreneurial activity in the UK with participating G7 countries and the large industrialised or industrialising countries of Brazil, Russia, India and China ("BRIC"). It also summarises entrepreneurial activity within Government Office Regions of the UK

    Beam Dynamics Studies for the CLIC Main Linac

    Full text link
    The implications of long-range wakefields on the beam quality are investigated through a detailed beam dynamics study. Injection offsets are considered and the resulting emittance dilution recorded, including systematic sources of error. These simulations have been conducted for damped and detuned structures (DDS) and for waveguide damped structures-both for the CLIC collider.Comment: 3 pages, 6 figures, IPAC1

    Evaluation of a Multizone Impedance Eduction Method

    Get PDF
    A computational study is used to evaluate the PyCHE impedance eduction method developed at the NASA Langley Research Center. This method combines an aeroacoustic duct propagation code based on numerical solution to the convected Helmholtz equation with a global optimizer that uses the Differential Evolution algorithm. The efficacy of this method is evaluated with acoustic pressure data simulated to represent that measured with one-zone, two-zone, and three-zone liners mounted in the NASA Langley Grazing Flow Impedance Tube. The PyCHE method has a normalized impedance error of approximately 0.2 for (uniform) one-zone liners with a length of at least 5, and produces quite reasonable results for liners as short as 2. Whereas the impedance of the liner has an effect on eduction accuracy, the amount of attenuation is shown to be the dominant parameter. Similar results are observed for two-zone liners, for which the impedance of each zone is unique. The two-zone results also indicate it is more difficult to accurately educe resistance than reactance, and a zone length of at least 6 (slightly longer than for uniform liners) is needed to limit the normalized error to 0.2. The PyCHE method is also demonstrated to successfully educe the impedances for each zone of a three-zone liner. These results are sufficiently encouraging to warrant the continued usage of the PyCHE impedance eduction method for single and multizone liners

    Sub-Natural-Linewidth Quantum Interference Features Observed in Photoassociation of a Thermal Gas

    Full text link
    By driving photoassociation transitions we form electronically excited molecules (Na2∗_2^*) from ultra-cold (50-300 ÎŒ\muK) Na atoms. Using a second laser to drive transitions from the excited state to a level in the molecular ground state, we are able to split the photoassociation line and observe features with a width smaller than the natural linewidth of the excited molecular state. The quantum interference which gives rise to this effect is analogous to that which leads to electromagnetically induced transparency in three level atomic Λ\Lambda systems, but here one of the ground states is a pair of free atoms while the other is a bound molecule. The linewidth is limited primarily by the finite temperature of the atoms.Comment: 4 pages, 5 figure

    A Search for Biomolecules in Sagittarius B2 (LMH) with the ATCA

    Full text link
    We have used the Australia Telescope Compact Array to conduct a search for the simplest amino acid, glycine (conformers I and II), and the simple chiral molecule propylene oxide at 3-mm in the Sgr B2 LMH. We searched 15 portions of spectrum between 85 and 91 GHz, each of 64 MHz bandwidth, and detected 58 emission features and 21 absorption features, giving a line density of 75 emission lines and 25 absorption lines per GHz stronger than the 5 sigma level of 110 mJy. Of these, 19 are transitions previously detected in the interstellar medium, and we have made tentative assignments of a further 23 features to molecular transitions. However, as many of these involve molecules not previously detected in the ISM, these assignments cannot be regarded with confidence. Given the median line width of 6.5 km/s in Sgr B2 LMH, we find that the spectra have reached a level where there is line confusion, with about 1/5 of the band being covered with lines. Although we did not confidently detect either glycine or propylene oxide, we can set 3 sigma upper limits for most transitions searched. We also show that if glycine is present in the Sgr B2 LMH at the level of N = 4 x 10^{14} cm^{-2} found by Kuan et al. (2003) in their reported detection of glycine, it should have been easily detected with the ATCA synthesized beam size of 17.0 x 3.4 arcsec^{2}, if it were confined to the scale of the LMH continuum source (< 5 arcsec). This thus puts a strong upper limit on any small-scale glycine emission in Sgr B2, for both of conformers I and II.Comment: 12 pages, 2 figures, 5 tables, accepted by MNRA

    Application of a multi-site mean-field theory to the disordered Bose-Hubbard model

    Full text link
    We present a multi-site formulation of mean-field theory applied to the disordered Bose-Hubbard model. In this approach the lattice is partitioned into clusters, each isolated cluster being treated exactly, with inter-cluster hopping being treated approximately. The theory allows for the possibility of a different superfluid order parameter at every site in the lattice, such as what has been used in previously published site-decoupled mean-field theories, but a multi-site formulation also allows for the inclusion of spatial correlations allowing us, e.g., to calculate the correlation length (over the length scale of each cluster). We present our numerical results for a two-dimensional system. This theory is shown to produce a phase diagram in which the stability of the Mott insulator phase is larger than that predicted by site-decoupled single-site mean-field theory. Two different methods are given for the identification of the Bose glass-to-superfluid transition, one an approximation based on the behaviour of the condensate fraction, and one of which relies on obtaining the spatial variation of the order parameter correlation. The relation of our results to a recent proposal that both transitions are non self-averaging is discussed.Comment: Accepted for publication in Physical Review
    • 

    corecore