10 research outputs found

    Quantitative paleoparasitology applied to archaeological sediments

    Get PDF
    Three techniques to extract parasite remains from archaeological sediments were tested. The aim was to improve the sensibility of recommended paleoparasitological techniques applied in archaeological remains. Sediment collected from the pelvic girdle of a human body found in Cabo VĂ­rgenes, Santa Cruz, Argentina, associated to a Spanish settlement founded in 1584 known as Nombre de JesĂșs, was used to search for parasites. Sediment close to the skull was used as control. The techniques recommended by Jones, Reinhard, and Dittmar and Teejen were used and compared with the modified technique presented here, developed to improve the sensibility to detect parasite remains. Positive results were obtained only with the modified technique, resulting in the finding of Trichuris trichiura eggs in the sediment

    Crystal structure of the polysialic acid–degrading endosialidase of bacteriophage K1F

    No full text
    Phages infecting the polysialic acid polySia encapsulated human pathogen Escherichia coli K1 are equipped with capsule degrading tailspikes known as endosialidases, which are the only identified enzymes that specifically degrade polySia. As polySia also promotes cellular plasticity and tumor metastasis in vertebrates, endosialidases are widely applied in polySia related neurosciences and cancer research. Here we report the crystal structures of endosialidase NF and its complex with oligomeric sialic acid. The structure NF, which reveals three distinct domains, indicates that the unique polySia specificity evolved from a combination of structural elements characteristic of exosialidases and bacteriophage tailspike proteins. The endosialidase assembles into a catalytic trimer stabilized by a triple amp; 946; helix. Its active site differs markedly from that of exosialidases, indicating an endosialidase specific substrate binding mode and catalytic mechanism. Residues essential for endosialidase activity were identified by structure based mutational analysi

    Neural mechanisms of social learning and decision-making

    No full text

    Formulation and Delivery Technologies for mRNA Vaccines

    No full text
    corecore