4,140 research outputs found
Recovery at Morvin: SERPENT final report
Recovery from disturbance is poorly understood in deep water, but the extent of anthropogenic impacts is becoming increasingly well documented. We used Remotely Operated Vehicles (ROV) to visually assess the change in benthic habitat after exploratory hydrocarbon drilling disturbance around the Morvin well located at 380m depth in the Norwegian Sea.An ROV, launched directly from the rig drilling the well in 2006 was used to carry out video transects around the well before drilling and immediately after. On a return to the site three years after disturbance a larger survey was conducted with a ship-launched ROV in 2009. Transects were repeated at the disturbed area and random background transects were taken. Visible drill cuttings were mapped for each survey, and positions and counts of epibenthic invertebrate megafauna were determined, revealing a fauna dominated by Cnidaria (45% of total observations) and Porifera (33%).Immediately after disturbance a visible cuttings pile extended to over 100m from the well and megafaunal density was significantly reduced (0.07 individuals m-2) in comparison to pre-drill data (0.23 ind. m-2). Three years later the visible extent of the cuttings pile had reduced in size, reaching 60m from the well and considerably less in some headings. In comparison to background transects (0.21 ind. m-2), megafaunal density was significantly reduced on the remaining cuttings (0.04m-2), but beyond the visible disturbance there was no significant difference (0.15m-2). The investigation at this site shows a return to background densities of megafaunal organisms over a large extent of the area previously disturbed. However a central area, where the initial cuttings pile was deepest, demonstrated reduced sessile megafaunal density which persisted three years after disturbance. Elevated Barium concentration and reduced sediment grain size suggests persistence of disturbance beyond the remaining visibly impacted area which may result in changes to the infaunal communities undetectable by ROV video survey
Is all hypoglycaemia treated as equal? An observational study of how the type of diabetes and treatment prescribed prior to admission influences quality of treatment of inpatient hypoglycaemia
Aims:
Inpatient hypoglycaemia is common and associated with adverse outcomes. There is often increased vigilance of hypoglycaemia in inpatients with type 1 diabetes (T1DM) compared to type 2 diabetes (T2DM). We aimed to investigate this apparent discrepancy, utilising the time to repeat (TTR) capillary blood glucose (CBG) measurement as a surrogate for engagement with guidelines stating that CBG should be rechecked following intervention within 15 min of an initial CBG of <4 mmol/L.
Methods:
This is an observational study of inpatient CBG data from 8 hospitals over a 7-year period. A national diabetes registry allowed identification of individual’s diagnosis and diabetes therapy. For each initial (index) CBG, the TTR for individuals with T2DM—on insulin or sulphonylurea—was compared with the TTR for individuals with T1DM, using a t test for significance performed on log(TTR). The median TTR was plotted for each group per index CBG.
Results:
In total, 1480,335 CBG measurements were obtained. A total of 26,664 were <4 mmol/L. The TTR in T2DM individuals on sulphonylurea was significantly greater than in T1DM individuals where index CBG was ≥2.3 mmol/L (except index CBG 2.6 mmol/L). For T2DM patients receiving insulin significance exists for index CBGs of ≥3.2 mmol/L.
Conclusions:
This analysis suggests that quality of care of hypoglycaemia varies according to diagnosis and medication. The group with the highest TTR (T2DM sulphonylurea treated) are possibly the clinical group in whom hypoglycaemia is most concerning. These data therefore suggest a need for education and raising awareness within the inpatient nursing staff
Schemes of implementation in NMR of quantum processors and Deutsch-Jozsa algorithm by using virtual spin representation
Schemes of experimental realization of the main two qubit processors for
quantum computers and Deutsch-Jozsa algorithm are derived in virtual spin
representation. The results are applicable for every four quantum states
allowing the required properties for quantum processor implementation if for
qubit encoding virtual spin representation is used. Four dimensional Hilbert
space of nuclear spin 3/2 is considered in details for this aimComment: 15 pages, 3 figure
Electrical activity of carbon-hydrogen centers in Si
The electrical activity of Cs-H defects in Si has been investigated in a combined modeling and experimental study. High-resolution Laplace capacitance spectroscopy with the uniaxial stress technique has been used to measure the stress-energy tensor and the results are compared with theoretical modeling. At low temperatures, implanted H is trapped as a negative-U center with a donor level in the upper half of the gap. However, at higher temperatures, H migrates closer to the carbon impurity and the donor level falls, crossing the gap. At the same time, an acceptor level is introduced into the upper gap making the defect a positive-U center
奥付
This paper demonstrates the application of a numerical continuation method to dynamic piecewise aeroelastic systems. The aeroelastic system is initially converted into a state space form and then into a set of equations which solve the system as the motion moves between different linear zones in a free-play motion. Once an initial condition is found that satisfies these sets of equations, a continuation method is used to find all other possible solutions of the same period for a variation in any parameter. This process can then be repeated for different order systems, allowing the limit cycle behaviour of the whole system to be built up. The solutions found using this method have been shown to be the same as those found using a more traditional Runge-Kutta type of approach with a considerable time saving and added flexibility through multiple parameter variation
The significance of sample mass in the analysis of steroid estrogens in sewage sludges and the derivation of partition coefficients in wastewaters
Optimization of an analytical method for determination of steroid estrogens, through minimizing sample size, resulted in recoveries >84%, with relative standard deviations <3% and demonstrated the significance of sample size on method performance. Limits of detection were 2.1–5.3 ng/g. Primary sludges had estrogen concentrations of up to one order of magnitude less than those found in biological sludges (up to 994 ng/g). However, partition coefficients were higher in primary sludges (except estriol), with the most hydrophobic compound (ethinylestradiol) exhibiting the highest Kp value, information which may be of value to those involved in modeling removal during wastewater treatment
Towards large scale microwave treatment of ores: Part 2 - Metallurgical testing
A pilot scale microwave treatment system capable of treating 10-150t/h of material at 10-200kW was designed, constructed and commissioned in order to understand the engineering challenges of microwave-induced fracture of ores at scale and generate large metallurgical test samples of material treated at approximately 0.3-3kWh/t. It was demonstrated that exposing more of the ore to a region of high power density by improving treatment homogeneity with two single mode applicators in series yielded equivalent or better metallurgical performance with up to half the power and one third the energy requirement of that used with a single applicator. Comminution testing indicated that A*b values may be reduced by up to 7-14% and that the Bond Ball Mill Work Index may be reduced by up to 3-9% depending on the ore type under investigation. Liberation analysis of the microwave-treated ore indicated that equivalent liberation may be achievable for a grind size approximately 40-70µm coarser than untreated ore, which is in agreement with laboratory scale investigations reported in the literature at similar or higher doses. Flow sheet simulations further indicated that reduced ore competency following microwave treatment could potentially yield up to a 9% reduction in specific comminution energy (ECS) at a nominal plant grind of P₈₀190µm, or up to 24% reduction at a grind of P₈₀290µm, for a microwave energy input of 0.7-1.3kWh/t. Throughput could also be increased by up to approximately 30% depending on grind size, ore type and equipment constraints. To date, approximately 900t of material has been processed through the pilot plant, approximately 300t of which was under microwave power. Metallurgical testing has demonstrated that comminution and liberation benefits are achievable at doses lower than that previously reported in the literature, which allow high throughputs to be sustained with low installed power requirements providing a pathway to further scale-up of microwave treatment of ores
Thermal Stabilization of the HCP Phase in Titanium
We have used a tight-binding model that is fit to first-principles
electronic-structure calculations for titanium to calculate quasi-harmonic
phonons and the Gibbs free energy of the hexagonal close-packed (hcp) and omega
crystal structures. We show that the true zero-temperature ground-state is the
omega structure, although this has never been observed experimentally at normal
pressure, and that it is the entropy from the thermal population of phonon
states which stabilizes the hcp structure at room temperature. We present the
first completely theoretical prediction of the temperature- and
pressure-dependence of the hcp-omega phase transformation and show that it is
in good agreement with experiment. The quasi-harmonic approximation fails to
adequately treat the bcc phase because the zero-temperature phonons of this
structure are not all stable
Towards large scale microwave treatment of ores: Part 1 – Basis of design, construction and commissioning
Despite over thirty years of work, microwave pre-treatment processes for beneficiation of ores have not progressed much further than laboratory testing. In this paper we present a scaleable pilot-scale system for the microwave treatment of ores capable of operating at throughputs of up to 150tph. This has been achieved by confining the electric field produced from two 100kW generators operating at 896MHz in a gravity fed vertical flow system using circular choking structures yielding power densities of at least 6x108 W/m3 in the heated mineral phases. Measured S11 scattering parameters for a quartzite ore (-3.69±0.4dB) in the as-built applicator correlated well with the simulation (-3.25dB), thereby validating our design approach. We then show that by fully integrating the applicator with a materials handling system based on the concept of mass flow, we achieve a reliable, continuous process. The system was used to treat a range of porphyry copper ores
New evidence for strong nonthermal effects in Tycho's supernova remnant
For the case of Tycho's supernova remnant (SNR) we present the relation
between the blast wave and contact discontinuity radii calculated within the
nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is
demonstrated that these radii are confirmed by recently published Chandra
measurements which show that the observed contact discontinuity radius is so
close to the shock radius that it can only be explained by efficient CR
acceleration which in turn makes the medium more compressible. Together with
the recently determined new value erg of the SN
explosion energy this also confirms our previous conclusion that a TeV
gamma-ray flux of erg/(cms) is to be expected from
Tycho's SNR. Chandra measurements and the HEGRA upper limit of the TeV
gamma-ray flux together limit the source distance to kpc.Comment: 5 pages, 4 figures. Accepted for publication in Astrophysics and
Space Science, Proc. of "The Multi-Messenger Approach to High-Energy
Gamma-ray Sources (Third Workshop on the Nature of Unidentified High-Energy
Sources)", Barcelona, July 4-7, 200
- …
