24,537 research outputs found

    Spin Hall Conductance of the Two Dimensional Hole Gas in a Perpendicular Magnetic Field

    Full text link
    The charge and spin Hall conductance of the two-dimensional hole gas within the Luttinger model with and without inversion symmetry breaking terms in a perpendicular magnetic field are studied, and two key phenomena are predicted. The sign of the spin Hall conductance is modulated periodically by the external magnetic field, which means a possible application in the future. Furthermore, a resonant spin Hall conductance in the two-dimensional hole gas with a certain hole density at a typical magnetic field is indicated, which implies a likely way to firmly establish the intrinsic spin Hall effect. The charge Hall conductance is unaffected by the spin-orbit coupling.Comment: accepted for publication in Phys. Rev. B; 6 pages, 4 figure

    Major coronary artery anomalies in a pediatric population: incidence and clinical importance

    Get PDF
    AbstractOBJECTIVESWe sought to prospectively determine the incidence and clinical significance of major coronary artery anomalies in asymptomatic children using transthoracic two-dimensional echocardiography.BACKGROUNDAnomalous origins of the left main coronary artery (ALMCA) from the right sinus of Valsalva or anomalous origins the right coronary artery (ARCA) from the left sinus are rarely diagnosed in children and can cause sudden death, especially in young athletes. Because most patients are asymptomatic, the diagnosis is often made post mortem. No study to date has prospectively identified anomalous coronary arteries in asymptomatic children in the general population.METHODSAfter serendipitously identifying an index case with ALMCA, we examined proximal coronary artery anatomy in children with otherwise anatomically normal hearts who were referred for echocardiography. In those diagnosed with ALMCA or ARCA, we performed further tests.RESULTSWithin a three-year period, echocardiograms were obtained in 2,388 children and adolescents. Four children (0.17%) were identified with anomalous origin of their coronary arteries, and angiograms, exercise perfusion studies and/or stress tests were then performed. One ARCA patient had decreased perfusion in the right coronary artery (RCA) perfusion area and showed ventricular ectopy on electrocardiogram (ECG) at rest that diminished but did not resolve with exercise. A second patient with ALMCA had atrial tachycardia immediately after exercise, with inferior and lateral ischemic changes on ECG and frequent junctional and/or ventricular premature complexes both at rest and recovery.CONCLUSIONSThis study demonstrates that although anomalous origins of coronary arteries are rare in asymptomatic children, the prevalence is greater than that found in other prospective studies. Ischemia can occur with both ALMCA and ARCA even though patients remain asymptomatic. Because of the high risk of sudden cardiac death, aggressive surgical management and close follow-up are necessary

    Scaling law for the electromagnetic form factors of the proton

    Get PDF
    The violation of the scaling law for the electric and magnetic form factors of the proton are examined within the cloudy bag model. The suppression of the ratio of the electric and magnetic form factors is natural in the bag model. The pion cloud plays a moderate role in understanding the recent data from TJNAF.Comment: 8 pages, REVTeX, 2 figures include

    Charged-Particle Motion in Electromagnetic Fields Having at Least One Ignorable Spatial Coordinate

    Full text link
    We give a rigorous derivation of a theorem showing that charged particles in an arbitrary electromagnetic field with at least one ignorable spatial coordinate remain forever tied to a given magnetic-field line. Such a situation contrasts the significant motions normal to the magnetic field that are expected in most real three-dimensional systems. It is pointed out that, while the significance of the theorem has not been widely appreciated, it has important consequences for a number of problems and is of particular relevance for the acceleration of cosmic rays by shocks.Comment: 7 pages, emulateapj format, including 1 eps figure, to appear in The Astrophysical Journal, Dec. 10 1998 issu

    Counselor Allegiance and Client Expectancy in Neuroscience-Informed Cognitive-Behavior Therapy: A 12-Month Qualitative Follow-Up

    Get PDF
    This article presents summative findings from a 12-month multiphase mixed-methods pilot study examining counselor and client perceptions of neuroscience-informed cognitive-behavior therapy (nCBT) following clinical application. Results from the first 6 months of the study indicated that the counselor\u27s and client\u27s beliefs about the credibility and effectiveness of nCBT (i.e., expectancy) remained stable from pretreatment to 6 months into treatment. The fourth phase of data collection at the 12-month interval followed an explanatory sequential process whereby the qualitative data were connected to earlier merged quantitative data to better understand initial findings from the first 6 months of the study. Results indicate that counselors\u27 initial comprehension and familiarity with the model, counselor–client trust, counselor delivery and suggestion, and client willingness to practice outside of session were key components to the development of counselor and client belief (expectancy) in the model. Implications for nCBT theory development and application are discussed

    SDSS IV MaNGA - Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    Get PDF
    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed HαH\alpha emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into the account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.Comment: 13 pages, 11 figures, accepted for publication in Ap

    Restoration of SMN in Schwann cells reverses myelination defects and improves neuromuscular function in spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein, primarily affecting lower motor neurons. Recent evidence from SMA and related conditions suggests that glial cells can influence disease severity. Here, we investigated the role of glial cells in the peripheral nervous system by creating SMA mice selectively overexpressing SMN in myelinating Schwann cells (Smn(−/−);SMN2(tg/0);SMN1(SC)). Restoration of SMN protein levels restricted solely to Schwann cells reversed myelination defects, significantly improved neuromuscular function and ameliorated neuromuscular junction pathology in SMA mice. However, restoration of SMN in Schwann cells had no impact on motor neuron soma loss from the spinal cord or ongoing systemic and peripheral pathology. This study provides evidence for a defined, intrinsic contribution of glial cells to SMA disease pathogenesis and suggests that therapies designed to include Schwann cells in their target tissues are likely to be required in order to rescue myelination defects and associated disease symptoms

    Template banks to search for compact binaries with spinning components in gravitational wave data

    Get PDF
    Gravitational waves from coalescing compact binaries are one of the most promising sources for detectors such as LIGO, Virgo and GEO600. If the components of the binary posess significant angular momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a binary's orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral phase of the signal and construct two new template banks using the phenomenological waveforms of Buonanno, Chen and Vallisneri. We compare the performance of these template banks to that of banks constructed using the stationary phase approximation to the non-spinning post-Newtonian inspiral waveform currently used by LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a search pipeline using phenomenological templates is no more effective than a pipeline which uses non-spinning templates. We recommend the continued use of the non-spinning stationary phase template bank until the false alarm rate associated with templates which include spin effects can be substantially reduced.Comment: 11 pages, 3 figure
    • …
    corecore