22 research outputs found

    The growing price gap between more and less healthy foods: analysis of a novel longitudinal UK dataset.

    Get PDF
    OBJECTIVES: The UK government has noted the public health importance of food prices and the affordability of a healthy diet. Yet, methods for tracking change over time have not been established. We aimed to investigate the prices of more and less healthy foods over time using existing government data on national food prices and nutrition content. METHODS: We linked economic data for 94 foods and beverages in the UK Consumer Price Index to food and nutrient data from the UK Department of Health's National Diet and Nutrition Survey, producing a novel dataset across the period 2002-2012. Each item was assigned to a food group and also categorised as either "more healthy" or "less healthy" using a nutrient profiling model developed by the Food Standards Agency. We tested statistical significance using a t-test and repeated measures ANOVA. RESULTS: The mean (standard deviation) 2012 price/1000 kcal was £2.50 (0.29) for less healthy items and £7.49 (1.27) for more healthy items. The ANOVA results confirmed that all prices had risen over the period 2002-2012, but more healthy items rose faster than less healthy ones in absolute terms:£0.17 compared to £0.07/1000 kcal per year on average for more and less healthy items, respectively (p<0.001). CONCLUSIONS: Since 2002, more healthy foods and beverages have been consistently more expensive than less healthy ones, with a growing gap between them. This trend is likely to make healthier diets less affordable over time, which may have implications for individual food security and population health, and it may exacerbate social inequalities in health. The novel data linkage employed here could be used as the basis for routine food price monitoring to inform public health policy.The present study was undertaken by the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence. The authors gratefully acknowledge the funding from the British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, the National Institute for Health Research, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration. AIC was fully supported by the Gates Cambridge Trust. The funding sources had no role in the design and conduct of the study or in the collection, management, analysis, and interpretation of the data.This is the final published version. It first appeared at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109343

    Accordance to the Dietary Approaches to Stop Hypertension diet pattern and cardiovascular disease in a British, population-based cohort.

    Get PDF
    The dietary approaches to stop hypertension (DASH) diet could be an important population-level strategy to reduce cardiovascular disease (CVD) in the UK, but there is little UK-based evidence on this diet pattern in relation to CVD risk. We tested whether dietary accordance with DASH was associated with risk of CVD in a population-based sample of 23,655 UK adults. This prospective analysis of the EPIC-Norfolk cohort study analysed dietary intake (assessed using a validated food frequency questionnaire) to measure accordance with DASH, based on intakes of eight food groups and nutrients, ranking the sample into quintiles. Cox proportional hazards regression models tested for association between DASH accordance and incident stroke, ischemic heart disease (IHD) and total incident CVD (stroke and IHD only), as well as CVD mortality, non-CVD mortality and total mortality. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated adjusting for age, sex, behavioral and clinical risk factors and socioeconomic status. Over an average of 12.4 years follow-up, we ascertained 4129 incident CVD events, of which stroke accounted for 1011. Compared to participants with the least DASH-accordant diets, those with the most DASH-accordant diets had 20% lower risk of incident stroke (HR, 95% CI 0.80, 0.65-0.99) and 13% lower risk of total incident CVD (0.88, 0.79-0.99) but no lower risk of CHD (0.90, 0.79-1.02). CVD-related mortality also showed strong inverse associations with DASH accordance (0.72, 0.60-0.85). This study provides evidence for the cardioprotective effects of DASH diet in a UK context

    Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Get PDF
    BACKGROUND: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. RESULTS: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1`s role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3` UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. CONCLUSIONS: Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
    corecore