12,921 research outputs found

    An operations manual for the digital data system

    Get PDF
    The Digital Data System (DDS) was designed to incorporate the analog-to-digital conversion process into the initial data acquisition stage and to store the data in a digital format. This conversion is done as part of the acquisition process. Consequently, the data are ready to be analyzed as soon as the test is completed. This capability permits the researcher to alter test parameters during the course of the experiment based on the information acquired in a prior portion of the test. The DDS is currently able to simultaneously acquire up to 10 channels of data. The purpose of this document is fourfold: (1) to describe the capabilities of the hardware in sufficient detail to allow the reader to determine whether the DDS is the optimum system for a particular experiment; (2) to present some of the more significant software developed to provide analyses within a short time of the completion of data acquisition; (3) to provide the reader with sample runs of major software routines to demonstrate their convenience and simple usage; and (4) a portion of the document is used to describe software which uses an FFT-box to provide a means of comparison against which the DDS can be checked

    Design of an Advanced Inlet Liner for the Quiet Technology Demonstrator 3

    Get PDF
    The utilization of advanced fan designs (including higher bypass ratios) and shorter engine nacelles has highlighted a need for increased fan noise reduction over a broad frequency range. Thus, improved broadband liner designs must account for these constraints and take advantage of novel liner configurations. With these observations in mind, the development and assessment of a broadband acoustic liner optimization process has been pursued through a series of design and experimental studies. In this work, an advanced inlet liner was designed for a Boeing 737MAX-7 to reduce drag and to improve the broadband noise reduction relative to conventional liners in use today. Specifically, a three layer liner was designed, fabricated, and flight tested as part of the Quiet Technology Demonstrator 3 flight test program. Initial tonal predictions captured the behavior of the measured data very well and both prediction and measurements show an increased acoustic benefit at larger observer angles, particularly at the takeoff condition. Ultimately, flight test results showed the three degree-of-freedom liner to provide a 3.2 EPNdB cumulative inlet component benefit and a 0.7 EPNdB cumulative airplane benefit over the production liner. This excellent result provides valuable validation of the broadband liner design process, as well as the enhancements made to the overall approach. It also illustrates the value of the design process in concurrently evaluating various liner designs (i.e., SDOF, MDOF, etc.) and their application to various locations. Thus, the design process may be applied with further confidence to investigate novel liner configurations in future design studies

    Effects of acoustic sources

    Get PDF
    An experiment was conducted to determine the effect of acoustics on the laminar flow on the side of a nacelle. A flight test was designed to meet this goal and a brief review of the purpose is given. A nacelle with a significant length of laminar flow was mounted on the wing of NASA OV-1. Two noise sources are also mounted on the wing: one in the center body of the nacelle; the second in a wing mounted pod outboard of the nacelle. These two noise sources allow for a limited study of the effect of source direction in addition to control of the acoustic level and frequency. To determine the range of Tollmien-Schlichting frequencies, a stability analysis using the pressure coefficient distribution along the side of the nacelle was performed. Then by applying these frequencies and varying the acoustic level, a study of the receptivity of the boundary layer to the acoustic signal, as determined by the shortening of the length of laminar flow, was conducted. Results are briefly discussed

    Evaluation of a multi-point method for determining acoustic impedance

    Get PDF
    An investigation was conducted to explore potential improvements provided by a Multi-Point Method (MPM) over the Standing Wave Method (SWM) and Two-Microphone Method (TMM) for determining acoustic impedance. A wave propagation model was developed to model the standing wave pattern in an impedance tube. The acoustic impedance of a test specimen was calculated from a best fit of this standing wave pattern to pressure measurements obtained along the impedance tube centerline. Three measurement spacing distributions were examined: uniform, random, and selective. Calculated standing wave patterns match the point pressure measurement distributions with good agreement for a reflection factor magnitude range of 0.004 to 0.999. Comparisons of results using 2, 3, 6, and 18 measurement points showed that the most consistent results are obtained when using at least 6 evenly spaced pressure measurements per half-wavelength. Also, data were acquired with broadband noise added to the discrete frequency noise and impedances were calculated using the MPM and TMM algorithms. The results indicate that the MPM will be superior to the TMM in the presence of significant broadband noise levels associated with mean flow

    Smeared Impedence Model for Variable Depth Liners

    Get PDF
    Noise from modern aircraft engines has a significant broadband component, which has motivated the need for broadband acoustic engine liners. A promising broadband design, called a variable depth liner, is composed of groups of resonators tuned for different frequencies. The accuracy of commonly used smeared impedance models, however, has not been thoroughly assessed for this type of liner. Therefore, the purpose of this study is to assess, and if necessary develop, semi-analytical impedance models for variable depth designs. The impedance prediction is complicated by the fact that the radiation loading on individual resonators within the array can be different. While the radiation loading can be neglected on conventional engine liners that consist of a dense array of uniform resonators, the same is not true for variable depth liners. To better understand and model this effect, nine liner samples are tested in the NASA Langley normal incidence tube. Comparisons of predicted and measured data for relatively simple non-uniform samples confirm that the radiation loading can be approximated using mass end correction terms. Semi-analytical impedance models that incorporate the proposed end corrections provide favorable comparisons with measured impedance spectra for variable depth liner samples

    An Investigation of Bifurcation Acoustic Treatment Effects on Aft-Fan Engine Nacelle Noise

    Get PDF
    Increasing air traffic and more stringent aircraft noise regulations continue to expand requirements on aircraft noise reduction capabilities for conventional and unconventional aircraft configurations. A major component of the overall aircraft noise is the sound associated with the propulsion system mounted in the engine nacelle. Acoustic liners mounted in the aircraft engine nacelles provide a significant portion of the current fan noise reduction. However, they must be further optimized if challenging noise reduction goals are to be achieved. One area within the aft bypass duct that may be an excellent candidate for increased attention is the acoustic treatment on the engine bifurcations (i.e., engine pylon and lower bifurcation). This paper describes a fundamental study of the effects of bifurcation treatment on simulated aft fan noise, as well as the validation of numerical tools to predict such effects. Five bifurcation configurations (four treated and one hardwall) were fabricated and tested in the NASA Langley Curved Duct Test Rig. Results show that mode scattering may occur due to both the presence of the bifurcation, as well as variable impedance distributions on the bifurcation surface. Future work will also include optimization of bifurcation treatments for testing in the Curved Duct Test Rig. These initial results are promising and this work provides valuable information for further study and improvement of the performance of bifurcation acoustic treatments

    Acoustic effects on profile drag of a laminar flow airfoil

    Get PDF
    A two-dimensional laminar flow airfoil (NLF-0414) was subjected to high-intensity sound (pure tones and white noise) over a frequency range of 2 to 5 kHz, while immersed in a flow of 240 ft/sec (Rn of 3 million) in a quiet flow facility. Using a wake-rake, wake dynamic pressures were determined and the deficit in momentum was used to calculate a two dimensional drag coefficient. Significant increases in drag were observed when the airfoil was subjected to the high intensity sound at critical sound frequencies. However, the increased drag was not accompanied by movement of the transition location

    Spectroscopic Confusion: Its Impact on Current and Future Extragalactic HI Surveys

    Get PDF
    We present a comprehensive model to predict the rate of spectroscopic confusion in HI surveys, and demonstrate good agreement with the observable confusion in existing surveys. Generically the action of confusion on the HI mass function was found to be a suppression of the number count of sources below the `knee', and an enhancement above it. This results in a bias, whereby the `knee' mass is increased and the faint end slope is steepened. For ALFALFA and HIPASS we find that the maximum impact this bias can have on the Schechter fit parameters is similar in magnitude to the published random errors. On the other hand, the impact of confusion on the HI mass functions of upcoming medium depth interferometric surveys, will be below the level of the random errors. In addition, we find that previous estimates of the number of detections for upcoming surveys with SKA-precursor telescopes may have been too optimistic, as the framework implemented here results in number counts between 60% and 75% of those previously predicted, while accurately reproducing the counts of existing surveys. Finally, we argue that any future single dish, wide area surveys of HI galaxies would be best suited to focus on deep observations of the local Universe (z < 0.05), as confusion may prevent them from being competitive with interferometric surveys at higher redshift, while their lower angular resolution allows their completeness to be more easily calibrated for nearby extended sources.Comment: Accepted to MNRAS, 14 pages, 9 figures, 2 table

    Assessment of Axial Wave Number and Mean Flow Uncertainty on Acoustic Liner Impedance Education

    Get PDF
    A key parameter in designing and assessing advanced broadband acoustic liners to achieve the current and future noise reduction goals is the acoustic impedance presented by the liner. This parameter, intrinsic to a specific liner configuration, is dependent on sound pressure level and grazing flow velocity. Current impedance eduction approaches have, in general, provided excellent results and continue to be employed throughout the acoustic liner community. However, some recent applications have indicated a possible dependence of the educed impedance on the direction of incident waves relative to the mean flow. The purpose of the current study is to investigate this unexpected behavior for various impedance eduction methods based on the Pridmore-Brown and convected Helmholtz equations. Specifically, the effects of flow profile and axial wavenumber uncertainties on educed impedances for upstream and downstream sources are investigated. The uniform flow results demonstrate the importance of setting a correct Mach number value in obtaining consistent educed impedances for upstream and downstream sources. In fact, the consistency of results over the two source locations was greatly improved by a slight modification of the uniform flow Mach number. In addition, uncertainty in educed axial wavenumber was also illustrated to correlate well with differences in the educed impedances, even with modified uniform flow Mach number. Finally, while less straightforward than in the uniform flow case, it appears that modification of the mean flow profile may also improve consistency of results for upstream and downstream results when shear flow is included
    corecore