29 research outputs found

    Rapid Cytotoxic T Lymphocyte Activation Occurs in the Draining Lymph Nodes After Cutaneous Herpes Simplex Virus Infection as a Result of Early Antigen Presentation and Not the Presence of Virus

    Get PDF
    Localized cutaneous herpes simplex virus type 1 (HSV-1) infection leads to arming and initial expansion of cytotoxic T lymphocytes (CTLs) in the draining popliteal lymph nodes (PLNs) followed by migration and further proliferation in the spleen. To accurately characterize the sequence of events involved in the activation and generation of anti-HSV CTLs, we used T cell receptor (TCR) transgenic mice specific for the immunodominant epitope from HSV glycoprotein B (gB498–505). We describe the detection of the initiation of antigen presentation in the draining lymph nodes by 4–6 h after infection with HSV-1. Analysis of CD69 up-regulation revealed activation of gB-specific CD8+ T cells by 6–8 h after infection. Furthermore, we show that T cell proliferation begins no sooner than 24 h after activation and is marked by the concurrent appearance of CTL activity in the PLNs. These events are not dependent on the presence of virus in the draining lymph nodes, and suggest a requirement for recruitment of professional antigen-presenting cells to the site of T cell activation. Consequently, we have defined the initiation of the CD8+ T cell–mediated response to cutaneous HSV-1 infection, demonstrating that the immune response to localized viral infection depends only on the appearance of cells presenting virus-derived antigen and commences with remarkable swiftness

    The CD8α+ Dendritic Cell Is Responsible for Inducing Peripheral Self-Tolerance to Tissue-associated Antigens

    Get PDF
    We previously described a mechanism for the maintenance of peripheral self-tolerance. This involves the cross-presentation of tissue-associated antigens by a bone marrow–derived cell type that stimulates the proliferation and ultimate deletion of self-reactive CD8 T cells. This process has been referred to as cross-tolerance. Here, we characterize the elusive cell type responsible for inducing cross-tolerance as a CD8α+ dendritic cell (DC). To achieve this aim, transgenic mice were generated expressing yellow fluorescent protein (YFP) linked to CTL epitopes for ovalbumin and glycoprotein B (gB) of herpes simplex virus under the rat insulin promoter (RIP). Although tracking of YFP was inconclusive, the use of a highly sensitive gB-specific hybridoma that produced β-galactosidase on encounter with antigen, enabled detection of antigen presentation by cells isolated from the pancreatic lymph node. This showed that a CD11c+CD8α+ cell was responsible for cross-tolerance, the same DC subset as previously implicated in cross-priming. These data indicate that CD8α+ DCs play a critical role in both tolerance and immunity to cell-associated antigens, providing a potential mechanism by which cytotoxic T lymphocyte can be immunized to viral antigens while maintaining tolerance to self

    The molecular basis underlying T cell specificity towards citrullinated epitopes presented by HLA-DR4

    Get PDF
    CD4+ T cells recognising citrullinated self-epitopes presented by HLA-DRB1 bearing the shared susceptibility epitope (SE) are implicated in rheumatoid arthritis (RA). However, the underlying T cell receptor (TCR) determinants of epitope specificity towards distinct citrullinated peptide antigens, including vimentin-64cit59-71 and α-enolase-15cit10-22 remain unclear. Using HLA-DR4-tetramers, we examine the T cell repertoire in HLA-DR4 transgenic mice and observe biased TRAV6 TCR gene usage across these two citrullinated epitopes which matches with TCR bias previously observed towards the fibrinogen β−74cit69-81 epitope. Moreover, shared TRAV26-1 gene usage is evident in four α-enolase-15cit10-22 reactive T cells in three human samples. Crystal structures of mouse TRAV6+ and human TRAV26-1+ TCR-HLA-DR4 complexes presenting vimentin-64cit59-71 and α-enolase-15cit10-22, respectively, show three-way interactions between the TCR, SE, citrulline, and the basis for the biased selection of TRAV genes. Position 2 of the citrullinated epitope is a key determinant underpinning TCR specificity. Accordingly, we provide a molecular basis of TCR specificity towards citrullinated epitopes

    Direct recognition of an intact foreign protein by an αβ T cell receptor

    Get PDF
    αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)6γ protein complex. This direct αβTCR–PE interaction occurs in an MHC-independent manner, yet triggers T cell activation and bound PE with an affinity comparable to αβTCR–peptide–MHC interactions. The crystal structure reveals how six αβTCR molecules simultaneously engage the PE hexamer, mediated by the complementarity-determining regions (CDRs) of the αβTCR. Here, the αβTCR mainly binds to two α-helices of the globin fold in the PE α-subunit, which is analogous to the antigen-binding platform of the MHC molecule. Using retrogenic mice expressing this TCR, we show that it supports intrathymic T cell development, maturation, and exit into the periphery as mature CD4/CD8 double negative (DN) T cells with TCR-mediated functional capacity. Accordingly, we show how an αβTCR can recognise an intact foreign protein in an antibody-like manner

    CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria

    Get PDF
    To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections

    Long-term retention of mature NK1.1+ NKT cells in the thymus

    No full text
    The NKT cell pool in the thymus contains immature (NK1.1) and mature (NK1.1) subsets that represent distinct linear stages of a linear developmental pathway. An unexplained paradox is why immature NK1.1 NKT cells are mainly exported to the periphery instead of the more mature and more abundant NK1.1 NKT cells. In this study we have determined that mature NK1.1 NKT cells are retained by the thymus to form an extremely long-lived resident population capable of rapid and prolonged production of IFN-γ and IL-4. The retention of mature NKT cells provides an explanation for why the periphery is mainly seeded by immature NK1.1 cells despite mature NK1.1 NKT cells being more abundant in the thymus. This is the first study to identify a mature T cell subset retained within the thymus and is additional evidence of the distinct developmental pathways of mainstream T cells and NKT cells
    corecore