2,148 research outputs found

    Pengaruh Kompensasi Finansial dan Non Finansial terhadap Kinerja Karyawan pada PT. Bina Mandala Pratama Perkasa

    Full text link
    Dewasa ini, dengan semakin ketatnya tingkat persaingan bisnis, mengakibatkan Perusahaan dihadapkan pada tantangan untuk dapat mempertahankan kelangsungan hidup. Oleh karena itu Perusahaan harus mampu bersaing dan salah satu alat yang dapat digunakan oleh Perusahaan adalah kompensasi. Jika program kompensasi dirasakan adil dan kompetitif oleh karyawan, maka Perusahaan akan lebih mudah untuk menarik karyawan yang potensial, mempertahankannya dan memotivasi karyawan agar lebih meningkatkan kinerjanya, sehingga produktivitas meningkat dan Perusahaan mampu menghasilkan produk dengan harga yang kompetitif. Pada akhirnya, Perusahaan bukan hanya unggul dalam persaingan, namun juga mampu mempertahankan kelangsungan hidupnya, bahkan mampu meningkatkan profitabilitas dan mengembangkan USAhanya

    Massive Star Formation

    Full text link
    The enormous radiative and mechanical luminosities of massive stars impact a vast range of scales and processes, from the reionization of the universe, to the evolution of galaxies, to the regulation of the interstellar medium, to the formation of star clusters, and even to the formation of planets around stars in such clusters. Two main classes of massive star formation theory are under active study, Core Accretion and Competitive Accretion. In Core Accretion, the initial conditions are self-gravitating, centrally concentrated cores that condense with a range of masses from the surrounding, fragmenting clump environment. They then undergo relatively ordered collapse via a central disk to form a single star or a small-N multiple. In this case, the pre-stellar core mass function has a similar form to the stellar initial mass function. In Competitive Accretion, the material that forms a massive star is drawn more chaotically from a wider region of the clump without passing through a phase of being in a massive, coherent core. In this case, massive star formation must proceed hand in hand with star cluster formation. If stellar densities become very high near the cluster center, then collisions between stars may also help to form the most massive stars. We review recent theoretical and observational progress towards understanding massive star formation, considering physical and chemical processes, comparisons with low and intermediate-mass stars, and connections to star cluster formation.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Dynamics of a Massive Binary at Birth

    Get PDF
    Almost all massive stars have bound stellar companions, existing in binaries or higher-order multiples. While binarity is theorized to be an essential feature of how massive stars form, essentially all information about such properties is derived from observations of already formed stars, whose orbital properties may have evolved since birth. Little is known about binarity during formation stages. Here we report high angular resolution observations of 1.3 mm continuum and H30alpha recombination line emission, which reveal a massive protobinary with apparent separation of 180 au at the center of the massive star-forming region IRAS07299-1651. From the line-of-sight velocity difference of 9.5 km/s of the two protostars, the binary is estimated to have a minimum total mass of 18 solar masses, consistent with several other metrics, and maximum period of 570 years, assuming a circular orbit. The H30alpha line from the primary protostar shows kinematics consistent with rotation along a ring of radius of 12 au. The observations indicate that disk fragmentation at several hundred au may have formed the binary, and much smaller disks are feeding the individual protostars.Comment: Published in Nature Astronomy. This is author's version. Full article is available here (https://rdcu.be/brENk). 47 pages, 10 figures, including methods and supplementary informatio

    The SOFIA Massive (SOMA) Star Formation Survey. II. High Luminosity Protostars

    Get PDF
    We present multi-wavelength images observed with SOFIA-FORCAST from ∼\sim10 to 40 μ\mum of seven high luminosity massive protostars, as part of the SOFIA Massive (SOMA) Star Formation Survey. Source morphologies at these wavelengths appear to be influenced by outflow cavities and extinction from dense gas surrounding the protostars. Using these images, we build spectral energy distributions (SEDs) of the protostars, also including archival data from Spitzer, Herschel and other facilities. Radiative transfer (RT) models of Zhang & Tan (2018), based on Turbulent Core Accretion theory, are then fit to the SEDs to estimate key properties of the protostars. Considering the best five models fit to each source, the protostars have masses m∗∼12−64 M⊙m_{*} \sim 12-64 \: M_{\odot} accreting at rates of m˙∗∼10−4−10−3 M⊙ yr−1\dot{m}_{*} \sim 10^{-4}-10^{-3} \: M_{\odot} \: \rm yr^{-1} inside cores of initial masses Mc∼100−500 M⊙M_{c} \sim 100-500 \: M_{\odot} embedded in clumps with mass surface densities Σcl∼0.1−3 g cm−2\Sigma_{\rm cl} \sim 0.1-3 \: \rm g \: cm^{-2} and span a luminosity range of 104−106 L⊙10^{4} -10^{6} \: L_{\odot}. Compared with the first eight protostars in Paper I, the sources analyzed here are more luminous, and thus likely to be more massive protostars. They are often in a clustered environment or have a companion protostar relatively nearby. From the range of parameter space of the models, we do not see any evidence that Σcl\Sigma_{\rm cl} needs to be high to form these massive stars. For most sources the RT models provide reasonable fits to the SEDs, though the cold clump material often influences the long wavelength fitting. However, for sources in very clustered environments, the model SEDs may not be such a good description of the data, indicating potential limitations of the models for these regions.Comment: 30 pages, 19 figures, Accepted for publication in Ap

    The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

    Get PDF
    We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10\sim10--40 μm40\:\rm{\mu}\rm{m}. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based MIR observations and archival {\it{Spitzer}} and {\it{Herschel}} data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m∗∼10m_*\sim10--50 M⊙\:M_\odot accreting at ∼10−4\sim10^{-4}--10−3 M⊙ yr−110^{-3}\:M_\odot\:{\rm{yr}}^{-1} inside cores of initial masses Mc∼30M_c\sim30--500 M⊙\:M_\odot embedded in clumps with mass surface densities Σcl∼0.1\Sigma_{\rm{cl}}\sim0.1--3 g cm−2\:{\rm{g\:cm}^{-2}}. Fitting Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100×\sim100\times smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.Comment: Accepted to ApJ, 32 page

    A Massive Protostar Forming by Ordered Collapse of a Dense, Massive Core

    Full text link
    We present 30 and 40 micron imaging of the massive protostar G35.20-0.74 with SOFIA-FORCAST. The high surface density of the natal core around the protostar leads to high extinction, even at these relatively long wavelengths, causing the observed flux to be dominated by that emerging from the near-facing outflow cavity. However, emission from the far-facing cavity is still clearly detected. We combine these results with fluxes from the near-infrared to mm to construct a spectral energy distribution (SED). For isotropic emission the bolometric luminosity would be 3.3x10^4 Lsun. We perform radiative transfer modeling of a protostar forming by ordered, symmetric collapse from a massive core bounded by a clump with high mass surface density, Sigma_cl. To fit the SED requires protostellar masses ~20-34 Msun depending on the outflow cavity opening angle (35 - 50 degrees), and Sigma_cl ~ 0.4-1 g cm-2. After accounting for the foreground extinction and the flashlight effect, the true bolometric luminosity is ~ (0.7-2.2)x10^5 Lsun. One of these models also has excellent agreement with the observed intensity profiles along the outflow axis at 10, 18, 31 and 37 microns. Overall our results support a model of massive star formation involving the relatively ordered, symmetric collapse of a massive, dense core and the launching bipolar outflows that clear low density cavities. Thus a unified model may apply for the formation of both low and high mass stars.Comment: 6 pages, 4 figures, 1 table, accepted to Ap

    A major histocompatibility complex class I–dependent subset of memory phenotype CD8+ cells

    Get PDF
    Most memory phenotype (MP) CD44hi CD8+ cells are resting interleukin (IL)-15–dependent cells characterized by high expression of the IL-2/IL-15 receptor β (CD122). However, some MP CD8+ cells have a CD122lo phenotype and are IL-15 independent. Here, evidence is presented that the CD122lo subset of MP CD8+ cells is controlled largely by major histocompatibility complex (MHC) class I molecules. Many of these cells display surface markers typical of recently activated T cells (CD62Llo, CD69hi, CD43hi, and CD127lo) and show a high rate of background proliferation. Cells with this phenotype are highly enriched in common γ chain–deficient mice and absent from MHC-I−/− mice. Unlike CD122hi CD8+ cells, CD122lo MP CD8+ cells survive poorly after transfer to MHC-I−/− hosts and cease to proliferate. Although distinctly different from typical antigen-specific memory cells, CD122lo MP CD8+ cells closely resemble the antigen-dependent memory CD8+ cells found in chronic viral infections
    • …
    corecore