48 research outputs found

    Quantitative Characterization of Smooth Pursuit Eye Movements in School-Age Children Using a Child-Friendly Setup

    Get PDF
    Purpose: It could be argued that current studies investigating smooth pursuit development in children do not provide an optimal measure of smooth pursuit characteristics, given that a significant number have failed to adjust their setup and procedures to the child population. This study aimed to characterize smooth pursuit in children using child-friendly stimuli and procedures. Methods: Eye movements were recorded in 169 children (4–11 years) and 10 adults, while a customized, animated stimulus was presented moving horizontally and vertically at 6°/s and 12°/s. Eye movement recordings from 43 children with delayed reading, two with nystagmus, two with strabismus, and two with unsuccessful calibration were excluded from the analysis. Velocity gain, proportion of smooth pursuit, and the number and amplitude of saccades during smooth pursuit were calculated for the remaining participants. Median and quartiles were calculated for each age group and pursuit condition. ANOVA was used to investigate the effect of age on smooth pursuit parameters. Results: Differences across ages were found in velocity gain (6°/s P 0.05). Conclusions: Using child-friendly methods, children over the age of 7 to 8 years demonstrated adultlike smooth pursuit. Translational Relevance: Child-friendly procedures are critical for appropriately characterizing smooth pursuit eye movements in children

    Infantile nystagmus: an optometrist's perspective

    Get PDF
    Infantile nystagmus (IN), previously known as congenital nystagmus, is an involuntary to-and-fro movement of the eyes that persists throughout life. IN is one of three types of early-onset nystagmus that begin in infancy, alongside fusion maldevelopment nystagmus syndrome and spasmus nutans syndrome. Optometrists may also encounter patients with acquired nystagmus. The features of IN overlap largely with those of fusion maldevelopment nystagmus syndrome, spasmus nutans syndrome, and acquired nystagmus, yet the management for each subtype is different. Therefore, the optometrist’s role is to accurately discern IN from other forms of nystagmus and to manage accordingly. As IN is a lifelong condition, its presence not only affects the visual function of the individual but also their quality of life, both socially and psychologically. In this report, we focus on the approaches that involve optometrists in the investigation and management of patients with IN. Management includes the prescription of optical treatments, low-vision rehabilitation, and other interventions such as encouraging the use of the null zone and referral to support groups. Other treatments available via ophthalmologists are also briefly discussed in the article

    Effect of Stimulus Type and Motion on Smooth Pursuit in Adults and Children

    Get PDF
    PURPOSE: This study presents a two-degree customized animated stimulus developed to evaluate smooth pursuit in children and investigates the effect of its predetermined characteristics (stimulus type and size) in an adult population. Then, the animated stimulus is used to evaluate the impact of different pursuit motion paradigms in children. METHODS: To study the effect of animating a stimulus, eye movement recordings were obtained from 20 young adults while the customized animated stimulus and a standard dot stimulus were presented moving horizontally at a constant velocity. To study the effect of using a larger stimulus size, eye movement recordings were obtained from 10 young adults while presenting a standard dot stimulus of different size (1° and 2°) moving horizontally at a constant velocity. Finally, eye movement recordings were obtained from 12 children while the 2° customized animated stimulus was presented after three different smooth pursuit motion paradigms. Performance parameters, including gains and number of saccades, were calculated for each stimulus condition. RESULTS: The animated stimulus produced in young adults significantly higher velocity gain (mean: 0.93; 95% CI: 0.90-0.96; P = .014), position gain (0.93; 0.85-1; P = .025), proportion of smooth pursuit (0.94; 0.91-0.96, P = .002), and fewer saccades (5.30; 3.64-6.96, P = .008) than a standard dot (velocity gain: 0.87; 0.82-0.92; position gain: 0.82; 0.72-0.92; proportion smooth pursuit: 0.87; 0.83-0.90; number of saccades: 7.75; 5.30-10.46). In contrast, changing the size of a standard dot stimulus from 1° to 2° did not have an effect on smooth pursuit in young adults (P > .05). Finally, smooth pursuit performance did not significantly differ in children for the different motion paradigms when using the animated stimulus (P > .05). CONCLUSIONS: Attention-grabbing and more dynamic stimuli, such as the developed animated stimulus, might potentially be useful for eye movement research. Finally, with such stimuli, children perform equally well irrespective of the motion paradigm used

    Two-dimensional analysis of smooth pursuit eye movements reveals quantitative deficits in precision and accuracy

    Get PDF
    Purpose: Small moving targets are followed by pursuit eye movements, with success ubiquitously defined by gain. Gain quantifies accuracy, rather than precision, and only for eye movements along the target trajectory. Analogous to previous studies of fixation, we analyzed pursuit performance in two dimensions as a function of target direction, velocity, and amplitude. As a subsidiary experiment, we compared pursuit performance against that of fixation. Methods: Eye position was recorded from 15 observers during pursuit. The target was a 0.4° dot that moved across a large screen at 8°/s or 16°/s, either horizontally or vertically, through peak-to-peak amplitudes of 8°, 16°, or 32°. Two-dimensional eye velocity was expressed relative to the target, and a bivariate probability density function computed to obtain accuracy and precision. As a comparison, identical metrics were derived from fixation data. Results: For all target directions, eye velocity was less precise along the target trajectory. Eye velocities orthogonal to the target trajectory were more accurate during vertical pursuit than horizontal. Pursuit accuracy and precision along and orthogonal to the target trajectory decreased at the higher target velocity. Accuracy along the target trajectory decreased with smaller target amplitudes. Conclusions: Orthogonal to the target trajectory, pursuit was inaccurate and imprecise. Compared to fixation, pursuit was less precise and less accurate even when following the stimulus that gave the best performance. Translational Relevance: This analytical approach may help the detection of subtle deficits in slow phase eye movements that could be used as biomarkers for disease progression and/or treatment

    Pupillary light reflex circuits in the macaque monkey: the preganglionic Edinger-Westphal nucleus

    Get PDF
    The motor outfow for the pupillary light refex originates in the preganglionic motoneuron subdivision of the Edinger– Westphal nucleus (EWpg), which also mediates lens accommodation. Despite their importance for vision, the morphology, ultrastructure and luminance-related inputs of these motoneurons have not been fully described in primates. In macaque monkeys, we labeled EWpg motoneurons from ciliary ganglion and orbital injections. Both approaches indicated preganglionic motoneurons occupy an EWpg organized as a unitary, ipsilateral cell column. When tracers were placed in the pretectal complex, labeled terminals targeted the ipsilateral EWpg and reached contralateral EWpg by crossing both above and below the cerebral aqueduct. They also terminated in the lateral visceral column, a ventrolateral periaqueductal gray region containing neurons projecting to the contralateral pretectum. Combining olivary pretectal and ciliary ganglion injections to determine whether a direct pupillary light refex projection is present revealed a labeled motoneuron subpopulation that displayed close associations with labeled pretectal terminal boutons. Ultrastructurally, this subpopulation received synaptic contacts from labeled pretectal terminals that contained numerous clear spherical vesicles, suggesting excitation, and scattered dense-core vesicles, suggesting peptidergic co-transmitters. A variety of axon terminal classes, some of which may serve the near response, synapsed on preganglionic motoneurons. Quantitative analysis indicated that pupillary motoneurons receive more inhibitory inputs than lens motoneurons. To summarize, the pupillary light refex circuit utilizes a monosynaptic, excitatory, bilateral pretectal projection to a distinct subpopulation of EWpg motoneurons. Furthermore, the interconnections between the lateral visceral column and olivary pretectal nucleus may provide pretectal cells with bilateral retinal felds

    Evidence for spatially-responsive neurons in the rostral thalamus

    Get PDF
    Damage involving the anterior thalamic and adjacent rostral thalamic nuclei may result in a severe anterograde amnesia, similar to the amnesia resulting from damage to the hippocampal formation. Little is known, however, about the information represented in these nuclei. To redress this deficit, we recorded units in three rostral thalamic nuclei in freely-moving rats (the parataenial nucleus, the anteromedial nucleus and nucleus reuniens). We found units in these nuclei possessing previously unsuspected spatial properties. The various cell types show clear similarities to place cells, head direction cells, and perimeter/border cells described in hippocampal and parahippocampal regions. Based on their connectivity, it had been predicted that the anterior thalamic nuclei process information with high spatial and temporal resolution while the midline nuclei have more diffuse roles in attention and arousal. Our current findings strongly support the first prediction but directly challenge or substantially moderate the second prediction. The rostral thalamic spatial cells described here may reflect direct hippocampal/parahippocampal inputs, a striking finding of itself, given the relative lack of place cells in other sites receiving direct hippocampal formation inputs. Alternatively, they may provide elemental thalamic spatial inputs to assist hippocampal spatial computations. Finally, they could represent a parallel spatial system in the brain

    Fornical and non-fornical projections from the rat hippocampal formation to the anterior thalamic nuclei

    Get PDF
    The hippocampal formation and anterior thalamic nuclei form part of an interconnected network thought to support memory. A central pathway in this mnemonic network comprises the direct projections from the hippocampal formation to the anterior thalamic nuclei, projections that, in the primate brain, originate in the subicular cortices to reach the anterior thalamic nuclei by way of the fornix. In the rat brain, additional pathways involving the internal capsule have been described, linking the dorsal subiculum to the anteromedial thalamic nucleus, as well as the postsubiculum to the anterodorsal thalamic nucleus. Confirming such pathways is essential in order to appreciate how information is transferred from the hippocampal formation to the anterior thalamus and how it may be disrupted by fornix pathology. Accordingly, in the present study, pathway tracers were injected into the anterior thalamic nuclei and the dorsal subiculum of rats with fornix lesions. Contrary to previous descriptions, projections from the subiculum to the anteromedial thalamic nucleus overwhelmingly relied on the fornix. Dorsal subiculum projections to the majority of the anteroventral nucleus also predominantly relied on the fornix, although postsubicular inputs to the lateral dorsal part of the anteroventral nucleus, as well as to the anterodorsal and laterodorsal thalamic nuclei, largely involved a non-fornical pathway, via the internal capsule

    Quick phases of infantile nystagmus show the saccadic inhibition effect

    Get PDF
    Purpose: Infantile nystagmus (IN) is a pathological, involuntary oscillation of the eyes consisting of slow, drifting eye movements interspersed with rapid reorienting quick phases. The extent to which quick phases of IN are programmed similarly to saccadic eye movements remains unknown. We investigated whether IN quick phases exhibit 'saccadic inhibition', a phenomenon typically related to normal targeting saccades, in which the initiation of the eye movement is systematically delayed by task-irrelevant visual distractors. Methods: We recorded eye position from 10 observers with early-onset idiopathic nystagmus while task-irrelevant distractor stimuli were flashed along the top and bottom of a large screen at ±10° eccentricity. The latency distributions of quick phases were measured with respect to these distractor flashes. Two additional participants, one with possible albinism and one with fusion maldevelopment nystagmus syndrome, were also tested. Results: All observers showed that a distractor flash delayed the execution of quick phases that would otherwise have occurred around 100 ms later, exactly as in the standard saccadic inhibition effect. The delay did not appear to differ between the two main nystagmus types under investigation (idiopathic IN with unidirectional and bidirectional jerk). Conclusions: The presence of the saccadic inhibition effect in IN quick phases is consistent with the idea that quick phases and saccades share a common programming pathway. This could allow quick phases to take on flexible, goal-directed behaviour, at odds with the view that IN quick phases are stereotyped, involuntary eye movements

    The potential and value of objective eye tracking in the ophthalmology clinic

    Get PDF
    Numerous research studies have demonstrated the scope and value of eye movement recording (EMR). There is now potential for EMR to be helpful in a range of clinical contexts and it could be developed as a routine part of the repertoire of clinical investigations offered by the NHS, at least in tertiary centres. We highlight potential uses and challenges below, as a prelude to further development and debat

    Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken

    Get PDF
    Purpose: A reduction in the power of the crystalline lens during childhood is thought to be important in the emmetropization of the maturing eye. However, in humans and model organisms, little is known about the factors that determine the dimensions of the crystalline lens and in particular whether these different parameters (axial thickness, surface curvatures, equatorial diameter, and volume) are under a common source of control or regulated independently of other aspects of eye size and shape. Methods: Using chickens from a broiler-layer experimental cross as a model system, three-dimensional magnetic resonance imaging (MRI) scans were obtained at 115-µm isotropic resolution for one eye of 501 individuals aged 3-weeks old. After fixation with paraformaldehyde, the excised eyes were scanned overnight (16 h) in groups of 16 arranged in a 2×2×4 array. Lens dimensions were calculated from each image by fitting a three-dimensional mesh model to the lens, using the semi-automated analysis program mri3dX. The lens dimensions were compared to measures of eye and body size obtained in vivo using techniques that included keratometry and A-scan ultrasonography. Results: A striking finding was that axial lens thickness measured using ex vivo MRI was only weakly correlated with lens thickness measured in vivo by ultrasonography (r=0.19, p<0.001). In addition, the MRI lens thickness estimates had a lower mean value and much higher variance. Indeed, about one-third of crystalline lenses showed a kidney-shaped appearance instead of the typical biconvex shape. Since repeat MRI scans of the same eye showed a high degree of reproducibility for the scanning and mri3dX analysis steps (the correlation in repeat lens thickness measurements was r=0.95, p<0.001) and a recent report has shown that paraformaldehyde fixation induces a loss of water from the human crystalline lens, it is likely that the tissue fixation step caused a variable degree of shrinkage and a change in shape to the lenses examined here. Despite this serious source of imprecision, we found significant correlations between lens volume and eye/body size (p<0.001) and between lens equatorial diameter and eye/body size (p<0.001) in these chickens. Conclusions: Our results suggest that certain aspects of lens size (specifically, lens volume and equatorial diameter) are controlled by factors that also regulate the size of the eye and body (presumably, predominantly genetic factors). However, since it has been shown previously that axial lens thickness is regulated almost independently of eye and body size, these results suggest that different systems might operate to control lens volume/diameter and lens thickness in normal chickens
    corecore