562 research outputs found

    Electrical Manipulation of Telecom Color Centers in Silicon

    Full text link
    Silicon color centers have recently emerged as promising candidates for commercial quantum technology, yet their interaction with electric fields has yet to be investigated. In this paper, we demonstrate electrical manipulation of telecom silicon color centers by fabricating lateral electrical diodes with an integrated G center ensemble in a commercial silicon on insulator wafer. The ensemble optical response is characterized under application of a reverse-biased DC electric field, observing both 100% modulation of fluorescence signal, and wavelength redshift of approximately 1.4 GHz/V above a threshold voltage. Finally, we use G center fluorescence to directly image the electric field distribution within the devices, obtaining insight into the spatial and voltage-dependent variation of the junction depletion region and the associated mediating effects on the ensemble. Strong correlation between emitter-field coupling and generated photocurrent is observed. Our demonstration enables electrical control and stabilization of semiconductor quantum emitters

    Aprotinin inhibits proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1

    Get PDF
    ObjectiveThrombin is generated in significant quantities during cardiopulmonary bypass and mediates adverse events, such as platelet aggregation and proinflammatory responses, through activation of the high-affinity thrombin receptor protease-activated receptor 1, which is expressed on platelets and endothelium. Thus antagonism of protease-activated receptor 1 might have broad therapeutic significance. Aprotinin, used clinically to reduce transfusion requirements and the inflammatory response to bypass, has been shown to inhibit protease-activated receptor 1 on platelets in vitro and in vivo. Here we have examined whether aprotinin inhibits endothelial protease-activated receptor 1 activation and resulting proinflammatory responses induced by thrombin.MethodsProtease-activated receptor 1 expression and function were examined in cultured human umbilical vein endothelial cells after treatment with α-thrombin at 0.02 to 0.15 U/mL in the presence or absence of aprotinin (200-1600 kallikrein inhibitory units/mL). Protease-activated receptor 1 activation was assessed by using an antibody, SPAN-12, which detects only the unactivated receptor, and thrombin-mediated calcium fluxes. Other thrombin-dependent inflammatory pathways investigated were phosphorylation of the p42/44 mitogen-activated protein kinase, upregulation of the early growth response 1 transcription factor, and production of the proinflammatory cytokine interleukin 6.ResultsPretreatment of cultured endothelial cells with aprotinin significantly spared protease-activated receptor 1 receptor cleavage (P < .0001) and abrogated calcium fluxes caused by thrombin. Aprotinin inhibited intracellular signaling through p42/44 mitogen-activated protein kinase (P < .05) and early growth response 1 transcription factor (P < .05), as well as interleukin 6 secretion caused by thrombin (P < .005).ConclusionsThis study demonstrates that endothelial cell activation by thrombin and downstream inflammatory responses can be inhibited by aprotinin in vitro through blockade of protease-activated receptor 1. Our results provide a new molecular basis to help explain the anti-inflammatory properties of aprotinin reported clinically

    Phasic Nucleus Accumbens Dopamine Encodes Risk-Based Decision-Making Behavior

    Get PDF
    To optimize behavior organisms evaluate the risks and benefits of available choices. The mesolimbic dopamine (DA) system encodes information about response costs and reward delays that bias choices. However, it remains unclear whether subjective value associated with risk-taking behavior is encoded by DA release

    NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol

    Get PDF
    The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations

    Thin film solar cell inflatable ultraviolet rigidizable deployment hinge

    Get PDF
    A flexible inflatable hinge includes curable resin for rigidly positioning panels of solar cells about the hinge in which wrap around contacts and flex circuits are disposed for routing power from the solar cells to the power bus further used for grounding the hinge. An indium tin oxide and magnesium fluoride coating is used to prevent static discharge while being transparent to ultraviolet light that cures the embedded resin after deployment for rigidizing the inflatable hinge

    Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System

    Get PDF
    By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM – two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) – while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS). Consistent weaknesses were identified across both models, with both the UM and IFS overestimating cloud occurrence below 3 km. This overestimation was also consistent across the three cloud configurations used within the UM framework, with >90 % mean cloud occurrence simulated between 0.15 and 1 km in all the model simulations. However, the cloud microphysical structure, on average, was modelled reasonably well in each simulation, with the cloud liquid water content (LWC) and ice water content (IWC) comparing well with observations over much of the vertical profile. The key microphysical discrepancy between the models and observations was in the LWC between 1 and 3 km, where most simulations (all except UM_RA2T) overestimated the observed LWC. Despite this reasonable performance in cloud physical structure, both models failed to adequately capture cloud-free episodes: this consistency in cloud cover likely contributes to the ever-present near-surface temperature bias in every simulation. Both models also consistently exhibited temperature and moisture biases below 3 km, with particularly strong cold biases coinciding with the overabundant modelled cloud layers. These biases are likely due to too much cloud-top radiative cooling from these persistent modelled cloud layers and were consistent across the three UM configurations tested, despite differences in their parameterisations of cloud on a sub-grid scale. Alarmingly, our findings suggest that these biases in the regional model were inherited from the global model, driving a cause–effect relationship between the excessive low-altitude cloudiness and the coincident cold bias. Using representative cloud condensation nuclei concentrations in our double-moment UM configuration while improving cloud microphysical structure does little to alleviate these biases; therefore, no matter how comprehensive we make the cloud physics in the nested LAM configuration used here, its cloud and thermodynamic structure will continue to be overwhelmingly biased by the meteorological conditions of its driving model

    Metagenomic study of the viruses of African straw-coloured fruit bats: detection of a chiropteran poxvirus and isolation of a novel adenovirus

    Get PDF
    Viral emergence as a result of zoonotic transmission constitutes a continuous public health threat. Emerging viruses such as SARS coronavirus, hantaviruses and henipaviruses have wildlife reservoirs. Characterising the viruses of candidate reservoir species in geographical hot spots for viral emergence is a sensible approach to develop tools to predict, prevent, or contain emergence events. Here, we explore the viruses of Eidolon helvum, an Old World fruit bat species widely distributed in Africa that lives in close proximity to humans. We identified a great abundance and diversity of novel herpes and papillomaviruses, described the isolation of a novel adenovirus, and detected, for the first time, sequences of a chiropteran poxvirus closely related with Molluscum contagiosum. In sum, E. helvum display a wide variety of mammalian viruses, some of them genetically similar to known human pathogens, highlighting the possibility of zoonotic transmission
    • …
    corecore