96 research outputs found
Sequence Analysis of Herbicide Target Genes in Herbicide-Tolerant Rice
The tolerance of mutagenized rice (Oryza sativa) lines to selector herbicides was investigated and the sequence of ALS gene was analyzed in plants that survived treatment with 4x the label rate of imazethapyr herbicide. This was done to determine if insensitivity to imazethapyr is due to mutation(s) in the herbicide binding site. Seedlots previously treated with ethyl-methyl sulfonate were planted in the field and 3-leaf seedlings were treated with various herbicides to screen for herbicide-tolerant mutants. Seeds from survivors composed the rice lines tested in the current research. Seeds were planted in the greenhouse and 3-leaf seedlings were treated with either 4x the recommended rate of imazethapyr, 4x mesotrione, 2x topramezone, 1x fluridone, 1x fluazifop, or 1x clethodim with their respective recommended adjuvants. Rice injury was assessed visually 14 days after treatment, leaf tissue samples were collected from survivors, and processed for sequencing of herbicide target genes. RNA was extracted from frozen plant tissues and converted to cDNA. PCR primers were designed to amplify the target genes for mesotrione (HPPD) and imazethapyr (ALS), respectively. The expected PCR product was isolated via gel electrophoresis, purified, and sent off for sequencing. Attempts to amplify HPPD failed; therefore, only ALS was sequenced. ALS sequence analysis revealed a mutation, Ser653Asn. This is one of the ALS point mutations that confer high resistance to imidazolinone (i.e. imazethapyr) and broad cross resistance to other ALS-inhibitor herbicide families including sulfonylurea8
Sequence Analysis of Herbicide Target Genes in Herbicide-Tolerant Rice
The tolerance of mutagenized rice (Oryza sativa) lines to selector herbicides was investigated and the sequence of ALS gene was analyzed in plants that survived treatment with 4x the label rate of imazethapyr herbicide. This was done to determine if insensitivity to imazethapyr is due to mutation(s) in the herbicide binding site. Seedlots previously treated with ethyl-methyl sulfonate were planted in the field and 3-leaf seedlings were treated with various herbicides to screen for herbicide-tolerant mutants. Seeds from survivors composed the rice lines tested in the current research. Seeds were planted in the greenhouse and 3-leaf seedlings were treated with either 4x the recommended rate of imazethapyr, 4x mesotrione, 2x topramezone, 1x fluridone, 1x fluazifop, or 1x clethodim with their respective recommended adjuvants. Rice injury was assessed visually 14 days after treatment, leaf tissue samples were collected from survivors, and processed for sequencing of herbicide target genes. RNA was extracted from frozen plant tissues and converted to cDNA. PCR primers were designed to amplify the target genes for mesotrione (HPPD) and imazethapyr (ALS), respectively. The expected PCR product was isolated via gel electrophoresis, purified, and sent off for sequencing. Attempts to amplify HPPD failed; therefore, only ALS was sequenced. ALS sequence analysis revealed a mutation, Ser653Asn. This is one of the ALS point mutations that confer high resistance to imidazolinone (i.e. imazethapyr) and broad cross resistance to other ALS-inhibitor herbicide families including sulfonylurea8
Diet-Derived Metabolites and Mucus Link the Gut Microbiome to Fever After Cytotoxic Cancer Treatment
Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant (n = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of Akkermansia muciniphila, a species of mucin-degrading bacteria (P = 0.006, corrected for multiple comparisons). Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas A. muciniphila reintroduction restored mucus thinning. Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory cytokines in the colon, and improved thermoregulation. These results suggest that diet, metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future microbiome-based preventive strategies
Diet-Derived Metabolites and Mucus Link the Gut Microbiome to Fever After Cytotoxic Cancer Treatment
Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant (n = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of Akkermansia muciniphila, a species of mucin-degrading bacteria (P = 0.006, corrected for multiple comparisons). Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas A. muciniphila reintroduction restored mucus thinning. Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory cytokines in the colon, and improved thermoregulation. These results suggest that diet, metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future microbiome-based preventive strategies
Descripción de una jornada educativo-sanitaria en un área vulnerable
El cambio climático influye favorablemente en la dispersión de distintas enfermedades transmisibles, zoonóticas y no zoonóticas. Realizar vigilancia y alertas tempranas, así como acciones tendientes al diagnóstico, tratamiento y profilaxis, a fin de realizar su control, es indispensable para evitar la diseminación de éstas a otros sitios. Un área centinela[I2] , barrios El Zanjón, Piria, Villa Ruben Sito, El Molino e Isla Río Santiago, de la Localidad de Ensenada, es visitada mensualmente por integrantes del Observatorio de Riesgo Sanitario. En el lugar circulan parasitosis endémicas como Dioctophyma renale (Dr) y otras que podrían caratularse como raras. Tal es el caso del Género Capillaria, representado en el lugar, por las especies C. aerophila, bohemi y C. plica en caninos.
Objetivo Describir una jornada educativo sanitaria en el área de estudio de EnsenadaFacultad de Ciencias Veterinaria
Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations
Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection.
Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis.
Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range similar to 8 km to similar to 190 km, corresponding to pressure levels from 9 mu bar down to a few nanobars.
Results. (i) A pressure of 1.18 +/- 0.03 mu bar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 mu bar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude.J.M.O. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Social Fund (ESF) through the PhD grant SFRH/BD/131700/2017. The work leading to these results has received funding from the European Research Council under the European Community's H2020 2014-2021 ERC grant Agreement nffi 669416 "Lucky Star". We thank S. Para who supported some travels to observe the 5 October 2017 occultation. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-Doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. We acknowledge useful exchanges with Mark Gurwell on the ALMA CO observations. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. J.L.O., P.S.-S., N.M. and R.D. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and the Proyecto de Excelencia de la Junta de Andalucia J.A. 2012-FQM1776. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 687378, as part of the project "Small Bodies Near and Far" (SBNAF). P.S.-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 "LEO-SBNAF". The work was partially based on observations made at the Laboratorio Nacional de Astrofisica (LNA), Itajuba-MG, Brazil. The following authors acknowledge the respective CNPq grants: F.B.-R. 309578/2017-5; R.V.-M. 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3 and 305917/2019-6; M.A. 427700/20183, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). G.B.R. acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016 and CAPES-PRINT/UNESP grant 88887.571156/2020-00, M.A. FAPERJ grant E26/111.488/2013 and A.R.G.Jr. FAPESP grant 2018/11239-8. B.E.M. thanks CNPq 150612/2020-6 and CAPES/Cofecub-394/2016-05 grants. Part of the photometric data used in this study were collected in the frame of the photometric observations with the robotic and remotely controlled telescope at the University of Athens Observatory (UOAO; Gazeas 2016). The 2.3 m Aristarchos telescope is operated on Helmos Observatory by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. Observations with the 2.3 m Aristarchos telescope were carried out under OPTICON programme. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730890. This material reflects only the authors views and the Commission is not liable for any use that may be made of the information contained therein. The 1.
2m Kryoneri telescope is operated by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the "Unite des Communes valdotaines Mont-Emilius". The 0.81 m Main Telescope at the OAVdA was upgraded thanks to a Shoemaker NEO Grant 2013 from The Planetary Society. D.C. and J.M.C. acknowledge funds from a 2017 'Research and Education' grant from Fondazione CRT-Cassa di Risparmio di Torino. P.M. acknowledges support from the Portuguese Fundacao para a Ciencia e a Tecnologia ref. PTDC/FISAST/29942/2017 through national funds and by FEDER through COMPETE 2020 (ref. POCI010145 FEDER007672). F.J. acknowledges Jean Luc Plouvier for his help. S.J.F. and C.A. would like to thank the UCL student support observers: Helen Dai, Elise Darragh-Ford, Ross Dobson, Max Hipperson, Edward Kerr-Dineen, Isaac Langley, Emese Meder, Roman Gerasimov, Javier Sanjuan, and Manasvee Saraf. We are grateful to the CAHA, OSN and La Hita Observatory staffs. This research is partially based on observations collected at Centro Astronomico HispanoAleman (CAHA) at Calar Alto, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofisica de Andalucia (CSIC). This article is also based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Partially based on observations made with the Tx40 and Excalibur telescopes at the Observatorio Astrofisico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Tecnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA). Tx40 and Excalibur are funded with the Fondos de Inversiones de Teruel (FITE). A.R.R. would like to thank Gustavo Roman for the mechanical adaptation of the camera to the telescope to allow for the observation to be recorded. R.H., J.F.R., S.P.H. and A.S.L. have been supported by the Spanish projects AYA2015-65041P and PID2019-109467GB-100 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT1366-19. Our great thanks to Omar Hila and their collaborators in Atlas Golf Marrakech Observatory for providing access to the T60cm telescope. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate
Overcoming leakage in scalable quantum error correction
Leakage of quantum information out of computational states into higher energy
states represents a major challenge in the pursuit of quantum error correction
(QEC). In a QEC circuit, leakage builds over time and spreads through
multi-qubit interactions. This leads to correlated errors that degrade the
exponential suppression of logical error with scale, challenging the
feasibility of QEC as a path towards fault-tolerant quantum computation. Here,
we demonstrate the execution of a distance-3 surface code and distance-21
bit-flip code on a Sycamore quantum processor where leakage is removed from all
qubits in each cycle. This shortens the lifetime of leakage and curtails its
ability to spread and induce correlated errors. We report a ten-fold reduction
in steady-state leakage population on the data qubits encoding the logical
state and an average leakage population of less than
throughout the entire device. The leakage removal process itself efficiently
returns leakage population back to the computational basis, and adding it to a
code circuit prevents leakage from inducing correlated error across cycles,
restoring a fundamental assumption of QEC. With this demonstration that leakage
can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure
Measurement-induced entanglement and teleportation on a noisy quantum processor
Measurement has a special role in quantum theory: by collapsing the
wavefunction it can enable phenomena such as teleportation and thereby alter
the "arrow of time" that constrains unitary evolution. When integrated in
many-body dynamics, measurements can lead to emergent patterns of quantum
information in space-time that go beyond established paradigms for
characterizing phases, either in or out of equilibrium. On present-day NISQ
processors, the experimental realization of this physics is challenging due to
noise, hardware limitations, and the stochastic nature of quantum measurement.
Here we address each of these experimental challenges and investigate
measurement-induced quantum information phases on up to 70 superconducting
qubits. By leveraging the interchangeability of space and time, we use a
duality mapping, to avoid mid-circuit measurement and access different
manifestations of the underlying phases -- from entanglement scaling to
measurement-induced teleportation -- in a unified way. We obtain finite-size
signatures of a phase transition with a decoding protocol that correlates the
experimental measurement record with classical simulation data. The phases
display sharply different sensitivity to noise, which we exploit to turn an
inherent hardware limitation into a useful diagnostic. Our work demonstrates an
approach to realize measurement-induced physics at scales that are at the
limits of current NISQ processors
Non-Abelian braiding of graph vertices in a superconducting processor
Indistinguishability of particles is a fundamental principle of quantum
mechanics. For all elementary and quasiparticles observed to date - including
fermions, bosons, and Abelian anyons - this principle guarantees that the
braiding of identical particles leaves the system unchanged. However, in two
spatial dimensions, an intriguing possibility exists: braiding of non-Abelian
anyons causes rotations in a space of topologically degenerate wavefunctions.
Hence, it can change the observables of the system without violating the
principle of indistinguishability. Despite the well developed mathematical
description of non-Abelian anyons and numerous theoretical proposals, the
experimental observation of their exchange statistics has remained elusive for
decades. Controllable many-body quantum states generated on quantum processors
offer another path for exploring these fundamental phenomena. While efforts on
conventional solid-state platforms typically involve Hamiltonian dynamics of
quasi-particles, superconducting quantum processors allow for directly
manipulating the many-body wavefunction via unitary gates. Building on
predictions that stabilizer codes can host projective non-Abelian Ising anyons,
we implement a generalized stabilizer code and unitary protocol to create and
braid them. This allows us to experimentally verify the fusion rules of the
anyons and braid them to realize their statistics. We then study the prospect
of employing the anyons for quantum computation and utilize braiding to create
an entangled state of anyons encoding three logical qubits. Our work provides
new insights about non-Abelian braiding and - through the future inclusion of
error correction to achieve topological protection - could open a path toward
fault-tolerant quantum computing
- …