5 research outputs found

    Ultra long range plasmonic waveguides using quasi two dimensional metallic layers

    Full text link
    We calculate the bound plasmonic modes of a quantum metamaterial slab, comprised of multiple quasi two dimensional electron gas (Q2DEG) layers, whose thickness is much smaller than the optical wavelength. For the first order transverse magnetic (TM) optical and the surface plasmonic modes we find propagation constants which are independent of both the electron density and of the scattering rates in the Q2DEGs. This leads to extremely long propagation distances. In a detailed case study of a structure comprising a slab of GaAs/AlGaAs multiple quantum well (MQW) material, we find propagation lengths of 100s of mm. In addition, the electric field enhancement associated with the plasmonic resonance is found to be sufficient to induce the condition of strong coupling between the slab modes and the intersubband transitions in the MQWs

    Saturation of intersubband transitions in p-doped GaAs/AlGaAs quantum wells

    Get PDF
    Optical saturation experiments have been performed on hh1-hh2 intersubband transitions in two samples of p-doped GaAs/AlGaAs quantum wells. The transitions had energies of 183 and 160 meV and the measured population relaxation times were 2±1.5 and 0.3±0.1 ps, respectively. Modeling of the quantum wells with a 6×6 k·p method shows that intersubband scattering by LO phonons can account for these relaxation times. The valence bandstructure is typically more complicated than the conduction bandstructure in a quantum well but these measurements show that LO phonons are the dominant intersubband scattering mechanism in both cases
    corecore