3,705 research outputs found

    Supercritical fluid coating of API on excipient enhances drug release

    Get PDF
    A process to coat particles of active pharmaceutical ingredient (API) onto microcrystalline cellulose (MCC) excipient shows promise as a new way to dosage forms showing enhanced drug release. The process consists of a fluidized bed operated at elevated pressure in which API particles are precipitated from a Supercritical Anti-Solvent process (SAS). MCC particles were used as an excipient in the fluidized bed and collect the SAS-generated API particles. Naringin was selected as the model API to coat onto MCC. A number of operational parameters of the process were investigated: fluidization velocity, coating pressure, temperature, concentration of drug solution, drug solution flow rate, drug mass, organic solvent, MCC mass and size and CO2-to-organic solution ratio. SEM and SPM analyses showed that the MCC particle surfaces were covered with near-spherical nanoparticles with a diameter of approximately 100ā€“200 nm, substantially smaller than the as-received API material. XRD showed that naringin changed from crystalline to amorphous during processing. The coated particles resulting from the SAS fluidized bed process have a higher loading of API, gave faster release rates and higher release ratios in comparison with those produced using a conventional fluidized bed coating process. The approach could be transferred to other industries where release is important such as agrochemical, cosmetic and food

    Infopipesā€”an Abstraction for Information Flow

    Get PDF
    Building Object-Oriented Distributed Systems has been facilitated by Remote Message Sending (RMS) systems like Java RMI and implementations of CORBA. However, RMS systems are designed to support request/response interactions. Streaming applications, in contrast, are characterized by high-bandwidth, long-duration communication with stringent performance requirements. Examples of streaming applications include video-on-demand, teleconferencing, on-line education, and environmental observation. These applications transfer huge amounts of data and focus on distributed information flow rather than request/response. To simplify the task of building distributed streaming applications, we propose a new abstraction for information flowā€”Infopipes. Using Infopipes, information flow becomes the heart of the system, not an auxiliary mechanism that is hidden away. Systems are built by connecting pre-defined component Infopipes such as sources, sinks, buffers, filters, broadcasting pipes, and multiplexing pipes. An Infopipe has a data interface that pulls information items from the upstream Infopipes, or pushes them into the downstream Infopipes, or both. An Infopipe also has a control interface that dynamically monitors and controls the properties of the Infopipe, and hence the properties of the information flowing through it. We intend to provide property-preserving composition of Infopipes, so that the properties of the whole pipeline can be calculated from the properties of the component Infopipes in it. Quality of Service (QoS) requirements then can be analyzed and understood system-wide. In Section 2 we discuss related technologies. In Section 3 we describe the concepts of Infopipes. We report our work on an Infopipe prototype in Section 4. Section 5 summarizes the features of Infopipes and lists some open questions

    Sparsity driven ultrasound imaging

    Get PDF
    An image formation framework for ultrasound imaging from synthetic transducer arrays based on sparsity-driven regularization functionals using single-frequency Fourier domain data is proposed. The framework involves the use of a physics-based forward model of the ultrasound observation process, the formulation of image formation as the solution of an associated optimization problem, and the solution of that problem through efficient numerical algorithms. The sparsity-driven, model-based approach estimates a complex-valued reflectivity field and preserves physical features in the scene while suppressing spurious artifacts. It also provides robust reconstructions in the case of sparse and reduced observation apertures. The effectiveness of the proposed imaging strategy is demonstrated using experimental data

    Study of the Microbial Diversity of a Newly Discovered East Antarctic Freshwater Lake, L27C, and of a Perennially Ice-Covered Lake Untersee

    Get PDF
    The microbial communities that reside within freshwater lakes of Schirmacher and Untersee Oases in East Antarctica must cope with extreme conditions that may include cold temperature, annual freeze-thaw cycles, exposure to UV radiation, especially during the austral summer months, low light beneath thick ice-cover, followed by seasonal darkness. The objective of this study was to assess the microbial biodiversity and distribution from samples taken from two freshwater lakes (L27C and Lake Untersee) that were collected during the Tawani 2008 International Antarctic Expedition that conducted research in this region of Antarctica. L27C is a small, previously unreported lake residing 2 km WNW of Maitri Station at Schirmacher Oasis. Biodiversity and distribution of microorganisms within the lake were studied using both culture-independent and culture-dependent methodologies based upon the analysis of eubacterial 16S rRNA gene sequences. Lake Untersee, a perennially ice-covered, ultra-oligotrophic, lake in the Otto-von-Gruber-Gebirge (Gruber Mountains) of central Dronning Maud Land was also sampled and the microbial diversity was analyzed by eubacterial 16S rRNA gene sequences derived from pure cultures. Direct culturing of water samples from each lake on separate R2A growth medium exhibited a variety of microorganisms including: Janthinobacterium, Hymenobacter, Sphingamonas, Subtercola, Deinococcus, Arthrobacter, Flavobacterium, Polaromonas, Rhodoferax and Duganella. The evaluation of samples from L27C through culture-independent methodology identified a rich microbial diversity consisting of six different phyla of bacteria. The culture-independent analysis also displayed the majority of bacteria (56%) belonged to the Class gamma-proteobacteria within the phylum Proteobacteria. Within the Class gamma-proteobacteria, Acinetobacter dominated (48%) the total microbial load. Overall, L27C exhibited 7 different phyla of bacteria and 20 different genera. Statistical analysis (Shannon-Weaver Diversity Index and Simpson Diversity Index) of the biodiversity of L27C displayed a moderately rich and diverse community. Investigations of the biodiversity and distribution of microorganisms in these lakes will help further our understanding of how the physical environment impact the structure and function within these microbially dominated ecosystems

    Optical Coherence Tomography Findings in Idiopathic Macular Holes

    Get PDF
    Purpose. To describe the characteristics of idiopathic macular holes (MH) on optical coherence tomography (OCT) and correlate OCT with clinical assessment. Design. Cross-sectional chart review and OCT assessment. Participants. Sixty-seven eyes with a clinically diagnosed idiopathic MH with available OCT data. Methods. A retrospective chart review and OCT assessment. Results. Based on OCT grading, 40 eyes had a full-thickness macular hole (FTMH) and 21 eyes had a lamellar macular hole (LMH). Clinical exam and OCT assessment agreed in 53 (87%) eyes when assessing the extent of MH. Six eyes (14.6%) in the FTMH group, and 3 eyes in the LMH group (14.3%) had persistent vitreomacular traction. Thirty-seven eyes (92.5%) in the FTMH group and 11 eyes (52.4%) in the LMH group had associated intraretinal cysts. Two eyes (5.0%) in the FTMH group and zero eyes in the LMH group had subretinal fluid. Intraretinal cysts were found to be more frequently associated with FTMH than with LMH (P < 0.001). Conclusion. This paper described OCT findings in a group of patients with clinically diagnosed MH. A high level of correlation between clinical assessment and OCT findings of LMH and FTMH was observed, and intraretinal cysts were often present in FTMH
    • ā€¦
    corecore