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Infopipes—an Abstraction for Information Flow

                           Jie Huang    Andrew P. Black    Jonathan Walpole           Calton Pu
                                      {jiehuang, black, walpole@cse.ogi.edu}                         {calton@cc.gatech.edu}

                                             Oregon Graduate Institute                        Georgia Institute of Technology

1. Introduction
Building Object-Oriented Distributed Systems has been facilitated by Remote Message Sending (RMS)
systems like Java RMI and implementations of CORBA. However, RMS systems are designed to support
request/response interactions. Streaming applications, in contrast, are characterized by high-bandwidth,
long-duration communication with stringent performance requirements. Examples of streaming
applications include video-on-demand, teleconferencing, on-line education, and environmental observation.
These applications transfer huge amounts of data and focus on distributed information flow rather than
request/response.

To simplify the task of building distributed streaming applications, we propose a new abstraction for
information flow—Infopipes. Using Infopipes, information flow becomes the heart of the system, not an
auxiliary mechanism that is hidden away. Systems are built by connecting pre-defined component
Infopipes such as sources, sinks, buffers, filters, broadcasting pipes, and multiplexing pipes. An Infopipe
has a data interface that pulls information items from the upstream Infopipes, or pushes them into the
downstream Infopipes, or both. An Infopipe also has a control interface that dynamically monitors and
controls the properties of the Infopipe, and hence the properties of the information flowing through it. We
intend to provide property-preserving composition of Infopipes, so that the properties of the whole pipeline
can be calculated from the properties of the component Infopipes in it. Quality of Service (QoS)
requirements then can be analyzed and understood system-wide.

In Section 2 we discuss related technologies. In Section 3 we describe the concepts of Infopipes.  We report
our work on an Infopipe prototype in Section 4. Section 5 summarizes the features of Infopipes and lists
some open questions.

2. Background of Infopipes
Pipes for information flow are not a new idea in computer science. In UNIX, pipes have long been used to
connect processes, one of which sends a flow of information to the other. FIFOs and Streams are improved
forms of pipes. These Unix mechanisms have shown that pipes are a convenient and natural abstraction for
transferring information.

However, these mechanisms are not sufficient to deal with the variety of operating system platforms,
network protocols, and devices in the Internet. RMS systems and similar middleware are designed to
address cross-platform problems. They hide the differences between various operating systems,
programming languages, networks, and processors. They encapsulate the error-prone steps of locating and
accessing remote hosts, marshalling and unmarshalling. The emphasis of RMS is to make remote method
invocations look like local ones.  So it is well suited to request/response interactions among client/server
applications. The QoS requirements of streaming applications are such that though frequently cannot
tolerate the performance overhead of RMS systems [Schmidt 1992, Mungee et al. 1999].

The mismatch between streaming applications and middleware has long been addressed. The Open
Software Foundation Distributed Computing Environment provides a pipe datatype in its RPC
implementation to support the streaming of very large parameters [Fauth et al. 1991]. The Object
Management Group has defined the CORBA Audio/Video Streaming Service Specification, which
separates its stream establishment and control protocols from its data transfer protocols. While the
establishment and control signals still pass through the Object Request Broker (ORB), applications can
select the most suitable data transfer protocols for particular network environment or application
requirements [Mungee et al. 1999].
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All these efforts aim at efficient transfer of a large amount of data by providing raw data streaming.
Infopipes support information transfer at a higher level of abstraction than the raw data. Infopipes maintain
QoS properties in information flow to help meet the diverse QoS requirements of streaming applications.
These properties include transport layer properties such as data rate, jitter, bandwidth and latency, and
application specific properties such as frame rate and play speed for streaming video. The Infopipe
abstraction hides the complexity of maintaining and managing them.

Many of the ideas in Infopipes come from our experience of building a video pipeline at the Oregon
Graduate Institute [Walpole et al. 1997; Krasic et al. 1999]. We also make use of component technology
and current middleware systems.

The current goal of Infopipes is to satisfy the requirements of distributed multimedia applications. The
ultimate goal is to provide smart delivery of fresh information for the Infosphere project, which is ongoing
at Georgia Institute of Technology and Oregon Graduate Institute [Pu 2000; Pu et al. 2001; Liu et al. 2000].

3. Infopipes
When working on the plumbing in a building, a plumber needs to study the structure of the building, to
decide the path of water flow, and to calculate the parameters of pipes and fixtures.  However, he does not
bother to design or to make pipes. Instead, he selects from pipes and fixtures on the shelves of hardware
stores. He connects the pipes and fixtures with the right sizes, lengths, and shapes. Soon a working system
is ready for use. This is the way we build an information flow system using Infopipes as shown in Figure 1.

3. 1 Pre-defined Infopipes
An Infopipe has zero or more in-ports and out-ports. These ports are the connectors of the Infopipe, to
which the ports of other Infopipes will be joined. An Infopipe also has well-defined properties such as rate,
latency, and jitter [Black 2000]. We have defined several types of Infopipes that are typical in an
information flow system. Some of them are shown in Figure 2.

Sources provide the information needed to be transferred. Examples of sources are digital cameras,
microphones, environmental sensors, files, web pages, and databases. Sources do not have in-ports.

Sinks are the destinations in an information flow system. They may be MPEG players that decompress the
streamed-media and display it. They may be files or database systems that store the information. Sinks do
not have out-ports.

Figure 2. Some Infopipes

Figure 1. Infopipes Framework
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Pipes transmit data. Communication links such as network connections, IPC channels, and hardware buses
may be wrapped as pipes. Pipes may vary in bandwidth, latency, or rate, but they all have one in-port and
one out-port.

Filters transform the information items flowing through them. The functions of filters include compression,
decompression, labeling, delabeling, encryption, and decryption. Filters can also implement dropping
policies. Filters provide computation capability in an information flow system.

Buffers provide temporary storage. They are used to smooth the jitter and the temporary differences
between input rate and output rate. Buffers are also the right place for flow control or reordering.

Pumps add "energy" to the system. The information in many sources will not flow out until it is requested.
Many sinks wait for the data to be pushed in. Pumps drive the information flow. Obviously, they are the
critical components for controlling data rate.

An information flow system is not always a straight line. So we have many kinds of branching pipes called
tees to construct systems with different topologies. We use merge tees to combine more than one stream
together. For example, we can use a merge tee to combine the video stream and the audio stream of a
MPEG movie. Split tees distribute information flows. For example, we can use a split tee to distribute a
stereo audio stream to two speakers. Multicast tees are split tees that send each input item to all out-ports.
There are two kinds of switching tees. A switching split tee has one in-port and multiple out-ports; one out-
port is selected for each input item. A switching merge tee has multiple in-ports and one out-port; at any
time, information items from only one in-port are transmitted; the selection is based on the information
item being transferred, the history, and the control information. Tees greatly improve the flexibility of
Infopipes but increase the complexity of property preservation and transfromation.

3. 2 Polarity of Infopipes
When two Infopipes are connected, either of them may initiate the process of information transfer.  So the
data interfaces of Infopipes have two operations: push and pull. As shown in Figure 3, an Infopipe may
call the push operation of its downstream Infopipe to send information items, or call the pull operation of
its upstream Infopipe to request information items.

However, we do not want it to be the case that both the source end and the destination end initiate data
transmission, or that neither of them initiate data transmission. These two cases are shown in Figure 4. In
the first case, data transmission will run out of control in that the rate and the order of data items are
unpredictable. In the latter case, no data will be transmitted at all.

Figure 3. Push and pull operations

Direction of information flow

reply [ack]

push [item] pull

reply [item]

Direction of information flow

push
[item]

pull

Figure 4. Incorrect connections

He will request
data…

He will send
data to me…
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To check whether Infopipes can be connected, we assign a polarity to each port of an Infopipe. Ports
through which an Infopipe actively sends out data or requests data are assigned positive polarities. These
ports send out the push or pull messages. Ports through which an Infopipe passively receives data, or sends
out data by replying to a request, are assigned negative polarities. These ports execute push or pull
operations when they get the messages. Only ports with opposite polarities can be connected. This rule is
shown is Figure 5. If all Infopipes are connected correctly, we are sure that information can flow through
the resulting pipeline.

Let’s examine the polarities for primitive Infopipes.  A pump has a positive in-port and a positive out-port.
It actively pulls data from upstream a nd pushes data downstream. A pump is not the information source but
the energy source of a system. We write pump: + ���

Buffers are naturally passive because they serve as storage. They have a negative in-port and a negative
out-port. They are the energy consumers in the system. We write buffer: í� �í�

The case of pipes is a little bit more complex. For a water pipe, if we keep pushing water into it, the water
comes out from the other end automatically. This phenomenon suggests that a pipe have a negative in-port
and a positive out-port. But we can also pull water from the output end of a pipe, as long as its input end is
in a pool. The pipe propagates the pull power and draws water from the pool. So it is also reasonable for a
pipe to have a positive in-port and a negative out-port. Pipes work well in both ways. For example, a client
can send data to a server through a network connection spontaneously, or it can reply to the server’s request
for data through the same connection.  In this sense, pipes are SRO\PRUSKLF��:H�ZULWH� SLSH�� � � �� LQ
ZKLFK� �LV�D�SRODULW\�YDULDEOH��ZKLFK�PD\�EH�HLWKHU�SRVLWLYH�RU�QHJDWLYH��DQG� �GHQRWHV�WKH�RSSRVLWH�RI� �

Figure 6 shows the polarity for Infopipes in our current design.

push [item]

reply [ack]

pull

reply [item]

push
[item]

pull

Figure 5. Polarities and connections

&RUUHFW�FRQQHFWLRQV�

,QFRUUHFW�FRQQHFWLRQV�

Figure 6. Polarity and Infopipes
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3. 3 Composite Pipes
Suppose there are two identical bathrooms in a house. The plumber does not need to do the design twice.
When he is working on the second bathroom, he can simply make a copy of the pipeline in the first one.

In Infopipes, we provide a mechanism to help to reuse a composite pipeline. If we build a group of
connected Infopipes with a reusable structure and favorable properties, we can put it into a black box called
a composite pipe. Then we can copy it and reuse it at other places as if it were a basic Infopipe.

One difficulty in copying a composite pipe for reuse is to decide which attribute values should be kept and
which attribute values should be discarded. For example, pumping rate and buffer size should be copied if
we want the copy to have the same properties. In contrast, network addresses and file names should be
discarded because the copy is likely to be used in another location.

Even though we have only a limited number of basic Infopipe types, composite pipes allow us to construct
a complex information flow system conveniently.

3. 4 Control Interfaces and Feedback Control
Different Infopipes may provide different control interfaces. Some control interfaces also depend on the
information flow. Currently, we have fillLevel for buffers and slower and faster for pumps. We are
investigating the properties and control information that should be maintained in Infopipes and information
flows to support more control interfaces.

Once the control interfaces are defined, we can use SWiFT [Goel et al. 1999] to build software feedback
controls, which allow a system to adapt to both sudden and gradual changes in environmental variables
such as network congestion and CPU saturation. The basic blocks in SWiFT are feedback components,
such as monitors, actuators, low pass filters, average filters, compensators, and so on. These components
may be composed into more sophisticated feedback mechanisms with predictable properties and failure
modes. Figure 7 shows an example of feedback control. The controller monitors the fill level of the buffer.
If it is almost full, the controller tells the pump to slow down. If it is almost empty, the controller tells the
pump to speed up. By using different compositions of SWiFT components and adjusting the components’
parameters, the controller can implement different control policies.

4. Infopipe Prototype
We have implemented a prototype of Infopipes in Squeak, a dialect of Smalltalk [Squeak 2001]. Each kind
of Infopipe is a class in Squeak. Data items are transmitted through push operations and pull operations.
Each Infopipe class has a set of named in-ports and a set of named out-ports. Infopipes are connected
through their ports. Ports have a polarity according to how they are used. We implement a polarity checker
to ensure that only ports with opposite polarities can be connected. We implement polarity checking using a
unification algorithm to retain the polymorphism of composed Infopipes.

We provide a netpipe class to support connections between machines. All details of networking are
encapsulated in the netpipe and it provides the same interfaces as a buffer. Connections between two
Infopipes always have local interfaces. We use a remote message passing package called S2S to send the
connection messages between two machines. S2S is like Java RMI for Squeak. Internally netpipes use UDP
to transmit data. Other version of netpipe might use other transport protocols according to the requirements
of applications.

control interface

slower / faster fill level

pump pipe buffer

controller

Figure 7. Control interface and feedback control
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We have built a streaming MIDI player as a demonstration of the Infopipe prototype. It has a simple
feedback control mechanism similar to the controller in Figure 7.

5. Concluding Remarks and Future Work
Infopipes are a new abstraction for transferring information over the Internet. They have following features:

• focus on information flow,

• explicit support of layered QoS properties,

• support for information flow composition,

• property preserving composition, and

• feedback-based adaptation.

These features distinguish Infopipes from other systems and facilitate the timely delivery of large quantities
of high quality information.

We believe that the following questions are worth further researchs:

• What QoS properties should be maintained in Infopipes and information flows? How should
they be represented and managed?

• How should the properties be composed? How should they be translated at different levels?

• Develop a Domain Specific Language to describe an Infopipe system and a generator to
translate the description to implementation.
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