182 research outputs found

    Power Up: Exploring Gaming in LIS Curricula

    Get PDF
    Given their educational potential, increasing accessibility, and growing, diverse user base, games are fast becoming integral parts of library collections and programming. Previous research has found that few ALA-accredited programs offer courses specifically on gaming in libraries, potentially leaving pre-service librarians unprepared to implement games in their libraries. This research study will survey LIS educators to identify factors that promote or inhibit the inclusion or exclusion of content related to games and gaming in their courses and curricula. The findings will be used to provide recommendations for curricula and best practices to better prepare LIS educators and, ultimately, pre-service librarians to engage with games and other new interactive media as part of the transforming universe of LIS education

    Development of 2-(4-pyridyl)-benzimidazoles as PKN2 chemical tools to probe cancer

    Get PDF
    Kinases are signalling proteins which have proven to be successful targets for the treatment of a variety of diseases, predominantly in cancers. However, only a small proportion of kinases (<20%) have been investigated for their therapeutic viability, likely due to the lack of available chemical tools across the kinome. In this work we describe initial efforts in the development of a selective chemical tool for protein kinase N2 (PKN2), a relatively unexplored kinase of interest in several types of cancer. The most successful compound, 5, has a measured IC50 of 0.064 μM against PKN2, with ca. 17-fold selectivity over close homologue, PKN1

    Mining Public Domain Data to Develop Selective DYRK1A Inhibitors

    Get PDF
    Kinases represent one of the most intensively pursued groups of targets in modern-day drug discovery. Often it is desirable to achieve selective inhibition of the kinase of interest over the remaining ∼500 kinases in the human kinome. This is especially true when inhibitors are intended to be used to study the biology of the target of interest. We present a pipeline of open-source software that analyzes public domain data to repurpose compounds that have been used in previous kinase inhibitor development projects. We define the dual-specificity tyrosine-regulated kinase 1A (DYRK1A) as the kinase of interest, and by addition of a single methyl group to the chosen starting point we remove glycogen synthase kinase β (GSK3β) and cyclin-dependent kinase (CDK) inhibition. Thus, in an efficient manner we repurpose a GSK3β/CDK chemotype to deliver 8b, a highly selective DYRK1A inhibitor

    Discovery and Characterization of Selective and Ligand-Efficient DYRK Inhibitors

    Get PDF
    Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) regulates the proliferation and differentiation of neuronal progenitor cells during brain development. Consequently, DYRK1A has attracted interest as a target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Down's syndrome. Recently, the inhibition of DYRK1A has been investigated as a potential treatment for diabetes, while DYRK1A's role as a mediator in the cell cycle has garnered interest in oncologic indications. Structure-activity relationship (SAR) analysis in combination with high-resolution X-ray crystallography leads to a series of pyrazolo[1,5-b]pyridazine inhibitors with excellent ligand efficiencies, good physicochemical properties, and a high degree of selectivity over the kinome. Compound 11 exhibited good permeability and cellular activity without P-glycoprotein liability, extending the utility of 11 in an in vivo setting. These pyrazolo[1,5-b]pyridazines are a viable lead series in the discovery of new therapies for the treatment of diseases linked to DYRK1A function

    Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors

    Get PDF
    Cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) play critical roles in the regulation of gene transcription. However, the absence of CDK12 and CDK13 inhibitors has hindered the ability to investigate the consequences of their inhibition in healthy cells and cancer cells. Here we describe the rational design of a first-in-class CDK12 and CDK13 covalent inhibitor, THZ531. Co-crystallization of THZ531 with CDK12–cyclin K indicates that THZ531 irreversibly targets a cysteine located outside the kinase domain. THZ531 causes a loss of gene expression with concurrent loss of elongating and hyperphosphorylated RNA polymerase II. In particular, THZ531 substantially decreases the expression of DNA damage response genes and key super-enhancer-associated transcription factor genes. Coincident with transcriptional perturbation, THZ531 dramatically induced apoptotic cell death. Small molecules capable of specifically targeting CDK12 and CDK13 may thus help identify cancer subtypes that are particularly dependent on their kinase activities.United States. National Institutes of Health (HG002668)United States. National Institutes of Health (CA109901

    Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors

    Get PDF
    Cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) play critical roles in the regulation of gene transcription. However, the absence of CDK12 and CDK13 inhibitors has hindered the ability to investigate the consequences of their inhibition in healthy cells and cancer cells. Here we describe the rational design of a first-in-class CDK12 and CDK13 covalent inhibitor, THZ531. Co-crystallization of THZ531 with CDK12–cyclin K indicates that THZ531 irreversibly targets a cysteine located outside the kinase domain. THZ531 causes a loss of gene expression with concurrent loss of elongating and hyperphosphorylated RNA polymerase II. In particular, THZ531 substantially decreases the expression of DNA damage response genes and key super-enhancer-associated transcription factor genes. Coincident with transcriptional perturbation, THZ531 dramatically induced apoptotic cell death. Small molecules capable of specifically targeting CDK12 and CDK13 may thus help identify cancer subtypes that are particularly dependent on their kinase activities.United States. National Institutes of Health (HG002668)United States. National Institutes of Health (CA109901

    Development of dihydropyrrolopyridinone-based PKN2/PRK2 chemical tools to enable drug discovery

    Get PDF
    The Protein Kinase N proteins (PKN1, PKN2 and PKN3) are Rho GTPase effectors. They are involved in several biological processes such as cytoskeleton organization, cell mobility, adhesion, and cell cycle. Recently PKNs have been reported as essential for survival in several tumor cell lines, including prostate and breast cancer. Here, we report the development of dihydropyrrolopyridinone-based inhibitors for PKN2 and its closest homologue, PKN1, and their associated structure–activity relationship (SAR). Our studies identified a range of molecules with high potency exemplified by compound 8 with Ki = 8 nM for PKN2 and 14x selectivity over PKN1. Membrane permeability and target engagement for PKN2 were assessed by a NanoBRET cellular assay. Importantly, good selectivity across the wider human kinome and other kinase family members was achieved. These compounds provide strong starting points for lead optimization to PKN1/2 development compounds

    Synthesis of kinase inhibitors containing a pentafluorosulfanyl moiety

    Get PDF
    A series of 3-methylidene-1H-indol-2(3H)-ones substituted with a 5- or 6- pentafluorosulfanyl group has been synthesized by a Knoevenagel condensation reaction of SF5-substituted oxindoles with a range of aldehydes. The resulting products were characterized by x-ray crystallography studies and were tested for biological activity versus a panel of cell lines and protein kinases. Some exhibited single digit nM activity

    A review of reporting of participant recruitment and retention in RCTs in six major journals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poor recruitment and retention of participants in randomised controlled trials (RCTs) is problematic but common. Clear and detailed reporting of participant flow is essential to assess the generalisability and comparability of RCTs. Despite improved reporting since the implementation of the CONSORT statement, important problems remain. This paper aims: (i) to update and extend previous reviews evaluating reporting of participant recruitment and retention in RCTs; (ii) to quantify the level of participation throughout RCTs.</p> <p>Methods</p> <p>We reviewed all reports of RCTs of health care interventions and/or processes with individual randomisation, published July–December 2004 in six major journals. Short, secondary or interim reports, and Phase I/II trials were excluded. Data recorded were: general RCT details; inclusion of flow diagram; participant flow throughout trial; reasons for non-participation/withdrawal; target sample sizes.</p> <p>Results</p> <p>133 reports were reviewed. Overall, 79% included a flow diagram, but over a third were incomplete. The majority reported the flow of participants at each stage of the trial after randomisation. However, 40% failed to report the numbers assessed for eligibility. Percentages of participants retained at each stage were high: for example, 90% of eligible individuals were randomised, and 93% of those randomised were outcome assessed. On average, trials met their sample size targets. However, there were some substantial shortfalls: for example 21% of trials reporting a sample size calculation failed to achieve adequate numbers at randomisation, and 48% at outcome assessment. Reporting of losses to follow up was variable and difficult to interpret.</p> <p>Conclusion</p> <p>The majority of RCTs reported the flow of participants well after randomisation, although only two-thirds included a complete flow chart and there was great variability over the definition of "lost to follow up". Reporting of participant eligibility was poor, making assessments of recruitment practice and external validity difficult. Reporting of participant flow throughout RCTs could be improved by small changes to the CONSORT chart.</p

    Effective, Broad Spectrum Control of Virulent Bacterial Infections Using Cationic DNA Liposome Complexes Combined with Bacterial Antigens

    Get PDF
    Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies. Here we describe the development and mechanism of a novel pan-anti-bacterial prophylaxis. Using cationic liposome non-coding DNA complexes (CLDC) mixed with crude F. tularensis membrane protein fractions (MPF), we demonstrate control of virulent F. tularensis infection in vitro and in vivo. CLDC+MPF inhibited bacterial replication in primary human and murine macrophages in vitro. Control of infection in macrophages was mediated by both reactive nitrogen species (RNS) and reactive oxygen species (ROS) in mouse cells, and ROS in human cells. Importantly, mice treated with CLDC+MPF 3 days prior to challenge survived lethal intranasal infection with virulent F. tularensis. Similarly to in vitro observations, in vivo protection was dependent on the presence of RNS and ROS. Lastly, CLDC+MPF was also effective at controlling infections with Yersinia pestis, Burkholderia pseudomallei and Brucella abortus. Thus, CLDC+MPF represents a novel prophylaxis to protect against multiple, highly virulent pathogens
    • …
    corecore