455 research outputs found

    Phase Control of Squeezed Vacuum States of Light in Gravitational Wave Detectors

    Full text link
    Quantum noise will be the dominant noise source for the advanced laser interferometric gravitational wave detectors currently under construction. Squeezing-enhanced laser interferometers have been recently demonstrated as a viable technique to reduce quantum noise. We propose two new methods of generating an error signal for matching the longitudinal phase of squeezed vacuum states of light to the phase of the laser interferometer output field. Both provide a superior signal to the one used in previous demonstrations of squeezing applied to a gravitational-wave detector. We demonstrate that the new signals are less sensitive to misalignments and higher order modes, and result in an improved stability of the squeezing level. The new signals also offer the potential of reducing the overall rms phase noise and optical losses, each of which would contribute to achieving a higher level of squeezing. The new error signals are a pivotal development towards realizing the goal of 6 dB and more of squeezing in advanced detectors and beyond

    High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors

    Get PDF
    Current laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5–50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise. We present a new electronic circuit design reducing the electronic noise of the photodetection circuit in the audio band. In the application of this circuit at the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit is about 5 µA/ √\ud Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also creates headroom for higher laser power and more squeezing to be observed in the future in GEO 600 and is applicable to other optics experiments

    Big Bang Nucleosynthesis Constraints on Brane Cosmologies

    Get PDF
    We examine constraints from Big Bang nucleosynthesis on type II Randall-Sundrum brane cosmologies with both a dark radiation component and a quadratic term that depends on the 5-dimensional Planck mass, M_5. Using limits on the abundances of deuterium and helium-4, we calculate the allowed region in the M_5-dark radiation plane and derive the precise BBN bound on M_5 alone with no dark radiation: M_5 > 13 TeV.Comment: 3 pages, 1 figure, references added, to appear in Phys. Lett.
    corecore