92 research outputs found

    Dependence of n-butane activation on active site of vanadium phosphate catalysts

    Get PDF
    The nature and the role of oxygen species and vanadium oxidation states on the activation of n-butane for selective oxidation to maleic anhydride were investigated. Bi–Fe doped and undoped vanadium phosphate catalysts were used a model catalyst. XRD revealed that Bi–Fe mixture dopants led to formation of αII-VOPO4 phase together with (VO)2P2O7 as a dominant phase when the materials were heated in n-butane/air to form the final catalysts. TPR analysis showed that the reduction behaviour of Bi–Fe doped catalysts was dominated by the reduction peak assigned to the reduction of V5+ species as compared to the undoped catalyst, which gave the reduction of V4+ as the major feature. An excess of the oxygen species (O2−) associated with V5+ in Bi–Fe doped catalysts improved the maleic anhydride selectivity but significantly lowering the rate of n-butane conversion. The reactive pairing of V4+-O− was shown to be the centre for n-butane activation. It is proposed that the availability and appearance of active oxygen species (O−) on the surface of vanadium phosphate catalyst is the rate determining step of the overall reaction

    Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO<sub>2</sub>:A sustainable approach to liquid fuels

    Get PDF
    Cu-ZrO2 is demonstrated to be a highly effective catalyst for the transfer hydrogenation of methyl levulinate to γ-valerolactone, using methanol as the hydrogen donor. The emergence of several new strategies for synthesising green methanol, underlines its potential as a sustainable hydrogen source for such transformations. Transfer hydrogenation of methyl levulinate over Cu-ZrO2 was determined to proceed through a two-step ‘hydrogen borrowing’ process. The first step involves methanol dehydrogenation (rate limiting) and the second, levulinate reduction. This proof-of-concept study demonstrates that methanol can be used effectively as a hydrogen source for such transformations when a suitable catalyst is employed

    Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane

    Get PDF
    A set of vanadium phosphorous oxide (VPO) catalysts, mainly consisting of (VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, VO(PO<sub>3</sub>)<sub>2</sub> or VOPO<sub>4</sub>∙2H<sub>2</sub>O bulk crystalline phases, has been investigated for the oxidative dehydrogenation (ODH) of ethane to ethylene, a key potential reaction for a sustainable industrial and socioeconomic development. The catalytic performance on these VPO catalysts has been explained on the basis of the main crystalline phases and the corresponding suface features found by XPS and LEISS at 400 ˚C, i.e. within the temperature range used for ODH reaction. The catalysts based on (VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> phase presented the highest catalytic activity and productivity to ethylene. Nevertheless, the catalysts consisting of VO(PO<sub>3</sub>)<sub>2</sub> structure showed higher selectivity to ethylene, reaching 90% selectivity at ca. 10% ethane conversion. To the best of our knowledge, this is the highest selectivity reported on a vanadium phosphorous oxide at similar conversions for the ethane ODH. In general, catalysts consisting of crystalline phases with vanadium present as V<sup>4+</sup>, i.e. (VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> and VO(PO<sub>3</sub>)<sub>2</sub>, were found to be significantly more selective to ethylene than those containing V<sup>5+</sup> phases. The surface analysis by XPS showed an inverse correlation between the mean oxidation state of vanadium near surface and the selectivity to ethylene. The lower averaged oxidation states of vanadium appear to be favoured by the presence of V<sup>3+</sup> species near the surface, which was only found in the catalysts containing V<sup>4+</sup> phases. Among those catalysts the one based on VO(PO<sub>3</sub>)<sub>2</sub> phase shows the highest selectivity, which could be related to the most isolated scenario of V species (the lowest V content relative to P) found at the outermost surface by low energy ion scattering spectroscopy (LEISS), a "true" surface technique only sensitive to the outermost atomic layer

    The antisolvent precipitation of CuZnOx mixed oxide materials using a choline chloride-urea deep eutectic solvent

    Get PDF
    Metal oxides have applications in a variety of different fields, and new synthesis methods are needed to control their properties and improve their performance as functional materials. In this study, we investigated a low-cost antisolvent precipitation method using a choline chloride-urea deep eutectic solvent to precipitate CuZnOx materials using water as the antisolvent. Using this methodology, the metal oxide materials can be precipitated directly from the deep eutectic solvent without the need for a high-temperature calcination step that can lead to a reduction in defects and surface area, which are important properties in applications such as catalysis

    Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts

    Get PDF
    A series of copper-zinc acetate and zincian georgeite precursors have been produced by supercritical CO2 anti-solvent (SAS) precipitation as precursors to Cu/ZnO catalysts for the water gas shift (WGS) reaction. The amorphous materials were prepared by varying the water/ethanol volumetric ratio in the initial metal acetate solutions. Water addition promoted georgeite formation at the expense of mixed metal acetates, which are formed in the absence of the water co-solvent. Optimum SAS precipitation occurs without water to give high surface areas, whilst a high water content gives inferior surface areas and copper-zinc segregation. Calcination of the acetates is exothermic, producing a mixture of metal oxides with high crystallinity. However, thermal decomposition of zincian georgeite resulted in highly dispersed CuO and ZnO crystallites with poor structural order. The georgeite-derived catalysts give superior WGS performance in comparison to the acetate-derived catalysts, which is attributed to enhanced copper-zinc interactions that originate from the precursor

    Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid

    Get PDF
    Exceptional selectivity of LaMnO3 perovskite supported Au catalysts for the oxidation of glycerol to the dicarboxylate tartronic acid is reported. Through using monometallic Au, Pt or bimetallic Au:Pt nanoparticles the tartronic acid yield could be altered significantly, with a maximum yield of 44% in 6 h with Au/LaMnO3 and 80% within 24 h. These LaMnO3 supported catalysts were compared with conventionally TiO2 supported catalysts, which at comparable reaction conditions produced lactic acid, via a dehydration pathway, in high yield and a maximum tartronic acid yield of only 9% was observed. The LaMnO3 catalysts produced minimal lactic acid regardless of the supported metal, showing that the support structure influences the prevalence of dehydration and oxidation pathways. The choice of metal nanoparticle influenced product selectivity along the oxidation pathway for both LaMnO3 and TiO2 supported catalysts. Au catalysts exhibited a higher selectivity to tartronic acid, whereas AuPt catalysts produced glyceric acid and Pt catalysts produced predominantly C–C scission products

    Influence of Bi–Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride

    Get PDF
    The physico-chemical and catalytic properties of three ways of modified catalysts were studied, i.e. (i) the addition of both Bi and Fe (nitrate form) during the refluxing VOPO4·2H2O with isobutanol (Catalyst A), (ii) the simultaneous addition of BiFe oxide powder in the course of the synthesis of precursor VOHPO4·0.5H2O (Catalyst B) and (iii) the mechanochemical treatment of precursor VOHPO4·0.5H2O and BiFe oxide in ethanol (Catalyst C). It was found that surface area of the modified catalysts has increased except Catalyst B. The reactivity of the oxygen species linked to V5+ and V4+ was studied by using H2-TPR, which also affected the catalytic performance of the catalyst. The conversion of n-butane decreases with an increment of oxygen species associated with V5+

    The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite

    Get PDF
    The effect of sodium species on the physical and catalytic properties of Cu/ZnO catalysts derived from zincian georgeite has been investigated. Catalysts prepared with <100 ppm to 2.1 wt% Na+, using a supercritical CO2 antisolvent technique, were characterised and tested for the low temperature water–gas shift reaction and also CO2 hydrogenation to methanol. It was found that zincian georgeite catalyst precursor stability was dependent on the Na+ concentration, with the 2.1 wt% Na+-containing sample uncontrollably ageing to malachite and sodium zinc carbonate. Samples with lower Na+ contents (<100–2500 ppm) remained as the amorphous zincian georgeite phase, which on calcination and reduction resulted in similar CuO/Cu particle sizes and Cu surface areas. The aged 2.1 wt% Na+ containing sample, after calcination and reduction, was found to comprise of larger CuO crystallites and a lower Cu surface area. However, calcination of the high Na+ sample immediately after precipitation (before ageing) resulted in a comparable CuO/Cu particle size to the lower (<100–2500 ppm) Na+ containing samples, but with a lower Cu surface area, which indicates that Na+ species block Cu sites. Activity of the catalysts for the water–gas shift reaction and methanol yields in the methanol synthesis reaction correlated with Na+ content, suggesting that Na+ directly poisons the catalyst. In situ XRD analysis showed that the ZnO crystallite size and consequently Cu crystallite size increased dramatically in the presence of water in a syn-gas reaction mixture, showing that stabilisation of nanocrystalline ZnO is required. Sodium species have a moderate effect on ZnO and Cu crystallite growth rate, with lower Na+ content resulting in slightly reduced rates of growth under reaction conditions

    Triethylamine-water as a switchable solvent for the synthesis of Cu/ZnO catalysts for carbon dioxide hydrogenation to methanol

    Get PDF
    Cu/ZnO catalyst precursors for industrial methanol synthesis catalysts are traditionally synthesised by coprecipitation. In this study, a new precipitation route has been investigated based on anti-solvent precipitation using a switchable solvent system of triethylamine and water. This system forms a biphasic system under a nitrogen atmosphere and can be switched to an ionic liquid single phase under a carbon dioxide atmosphere. When metal nitrate solutions were precipitated from water using triethylamine–water as the anti-solvent a hydroxynitrate phase, gerhardite, was formed, rather than the hydroxycarbonate, malachite, formed by coprecipitation. When calcined and reduced, the gerhardite precursors formed Cu/ZnO catalysts which showed better productivity for methanol synthesis from CO2 hydrogenation than a traditional malachite precursor, despite their larger CuO crystallite size determined by X-ray diffraction. The solvents could be recovered by switching to the biphasic system after precipitation, to allow solvent recycling in the process, reducing waste associated with the catalyst synthesis

    Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient-pressure water-gas-shift copper/zinc oxide catalysts

    Get PDF
    © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim A series of copper–zinc acetate and zincian georgeite precursors have been produced by supercritical CO 2 antisolvent (SAS) precipitation as precursors to Cu/ZnO catalysts for the water gas shift (WGS) reaction. The amorphous materials were prepared by varying the water/ethanol volumetric ratio in the initial metal acetate solutions. Water addition promoted georgeite formation at the expense of mixed metal acetates, which are formed in the absence of the water co-solvent. Optimum SAS precipitation occurs without water to give high surface areas, whereas high water content gives inferior surface areas and copper–zinc segregation. Calcination of the acetates is exothermic, producing a mixture of metal oxides with high crystallinity. However, thermal decomposition of zincian georgeite resulted in highly dispersed CuO and ZnO crystallites with poor structural order. The georgeite-derived catalysts give superior WGS performance to the acetate-derived catalysts, which is attributed to enhanced copper–zinc interactions that originate from the precursor
    corecore