111 research outputs found

    Copper Homeostasis: Specialized Functions of the Late Secretory Pathway

    Get PDF
    Differentiated cells have evolved mechanisms to adapt the functions of the late secretory pathway to the specific needs of the organism. Reporting in this issue of Developmental Cell, Polishchuk etΒ al. (2014) demonstrate that hepatocytes utilize a unique exocytic aspect of the late endosomal/lysosomal compartment to maintain organismal copper homeostasis

    Special issue: Cell biology of metals

    Get PDF

    Conditional knockout of the Menkes disease copper transporter demonstrates its critical role in embryogenesis

    Get PDF
    Β© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 7 (2012): e43039, doi:10.1371/journal.pone.0043039.The transition metal, copper (Cu), is an enzymatic cofactor required for a wide range of biochemical processes. Its essentiality is demonstrated by Menkes disease, an X-linked copper deficiency disorder characterized by defects in nervous-, cardiovascular- and skeletal systems, and is caused by mutations in the ATP7A copper transporter. Certain ATP7A mutations also cause X-linked Spinal Muscular Atrophy type 3 (SMAX3), which is characterized by neuromuscular defects absent an underlying systemic copper deficiency. While an understanding of these ATP7A-related disorders would clearly benefit from an animal model that permits tissue-specific deletion of the ATP7A gene, no such model currently exists. In this study, we generated a floxed mouse model allowing the conditional deletion of the Atp7a gene using Cre recombinase. Global deletion of Atp7a resulted in morphological and vascular defects in hemizygous male embryos and death in utero. Heterozygous deletion in females resulted in a 50% reduction in live births and a high postnatal lethality. These studies demonstrate the essential role of the Atp7a gene in mouse embryonic development and establish a powerful model for understanding the tissue-specific roles of ATP7A in copper metabolism and disease.This work was supported by National Institutes of Health Grants DK59893 and DK093386 to M.J.P., and DK44464 to J.D.G

    Microvillar and ciliary defects in zebrafish lacking an actin-binding bioactive peptide amidating enzyme

    Get PDF
    Β© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 4547, doi:10.1038/s41598-018-22732-9.The assembly of membranous extensions such as microvilli and cilia in polarized cells is a tightly regulated, yet poorly understood, process. Peptidylglycine Ξ±-amidating monooxygenase (PAM), a membrane enzyme essential for the synthesis of amidated bioactive peptides, was recently identified in motile and non-motile (primary) cilia and has an essential role in ciliogenesis in Chlamydomonas, Schmidtea and mouse. In mammalian cells, changes in PAM levels alter secretion and organization of the actin cytoskeleton. Here we show that lack of Pam in zebrafish recapitulates the lethal edematous phenotype observed in Pamβˆ’/βˆ’ mice and reveals additional defects. The pamβˆ’/βˆ’ zebrafish embryos display an initial striking loss of microvilli and subsequently impaired ciliogenesis in the pronephros. In multiciliated mouse tracheal epithelial cells, vesicular PAM staining colocalizes with apical actin, below the microvilli. In PAM-deficient Chlamydomonas, the actin cytoskeleton is dramatically reorganized, and expression of an actin paralogue is upregulated. Biochemical assays reveal that the cytosolic PAM C-terminal domain interacts directly with filamentous actin but does not alter the rate of actin polymerization or disassembly. Our results point to a critical role for PAM in organizing the actin cytoskeleton during development, which could in turn impact both microvillus formation and ciliogenesis.This study was supported by grants DK032949 (to BAE and REM), DK044464 (to JDG) and GM051293 (to SMK) from the National Institutes of Health

    Atp7a determines a hierarchy of copper metabolism essential for notochord development

    Get PDF
    SummaryThe critical developmental and genetic requirements of copper metabolism during embryogenesis are unknown. Utilizing a chemical genetic screen in zebrafish, we identified small molecules that perturb copper homeostasis. Our findings reveal a role for copper in notochord formation and demonstrate a hierarchy of copper metabolism within the embryo. To elucidate these observations, we interrogated a genetic screen for embryos phenocopied by copper deficiency, identifying calamity, a mutant defective in the zebrafish ortholog of the Menkes disease gene (atp7a). Copper metabolism in calamity is restored by human ATP7A, and transplantation experiments reveal that atp7a functions cell autonomously, findings with important therapeutic implications. The gene dosage of atp7a determines the sensitivity to copper deprivation, revealing that the observed developmental hierarchy of copper metabolism is informed by specific genetic factors. Our data provide insight into the developmental pathophysiology of copper metabolism and suggest that suboptimal copper metabolism may contribute to birth defects

    Kinesin family member 6 (kif6) is necessary for spine development in zebrafish

    Get PDF
    Author Posting. Β© The Author(s), 2014. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Developmental Dynamics 243 (2014): 1646–1657, doi:10.1002/dvdy.24208.Idiopathic scoliosis is a form of spinal deformity that affects 2–3% of children and results in curvature of the spine without structural defects of the vertebral units. The pathogenesis of idiopathic scoliosis remains poorly understood, in part due to the lack of a relevant animal model. We performed a forward mutagenesis screen in zebrafish to identify new models for idiopathic scoliosis. We isolated a recessive zebrafish mutant, called skolios, which develops isolated spinal curvature that arises independent of vertebral malformations. Using meiotic mapping and whole genome sequencing, we identified a nonsense mutation in kinesin family member 6 (kif6gw326) unique to skolios mutants. Three additional kif6 frameshift alleles (gw327, gw328, gw329) were generated with transcription activator-like effector nucleases (TALENs). Zebrafish homozygous or compound heterozygous for kif6 frameshift mutations developed a scoliosis phenotype indistinguishable from skolios mutants, confirming that skolios is caused by the loss of kif6. Although kif6 may play a role in cilia, no evidence for cilia dysfunction was seen in kif6gw326 mutants. Overall, these findings demonstrate a novel role for kif6 in spinal development and identify a new candidate gene for human idiopathic scoliosis.2015-11-1

    Bir izdivacın tarih-i muaşakası

    Get PDF
    Uşakizade Halit Ziya'nın Hizmet'te tefrika edilen Bir İzdivacın Tarih-i Muaşakası adlı roman

    Elesclomol restores mitochondrial function in genetic models of copper deficiency

    Get PDF
    Β© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 8161-8166, doi:10.1073/pnas.1806296115.Copper is an essential cofactor of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Inherited loss-of-function mutations in several genes encoding proteins required for copper delivery to CcO result in diminished CcO activity and severe pathologic conditions in affected infants. Copper supplementation restores CcO function in patient cells with mutations in two of these genes, COA6 and SCO2, suggesting a potential therapeutic approach. However, direct copper supplementation has not been therapeutically effective in human patients, underscoring the need to identify highly efficient copper transporting pharmacological agents. By using a candidate-based approach, we identified an investigational anticancer drug, elesclomol (ES), that rescues respiratory defects of COA6-deficient yeast cells by increasing mitochondrial copper content and restoring CcO activity. ES also rescues respiratory defects in other yeast mutants of copper metabolism, suggesting a broader applicability. Low nanomolar concentrations of ES reinstate copper-containing subunits of CcO in a zebrafish model of copper deficiency and in a series of copper-deficient mammalian cells, including those derived from a patient with SCO2 mutations. These findings reveal that ES can restore intracellular copper homeostasis by mimicking the function of missing transporters and chaperones of copper, and may have potential in treating human disorders of copper metabolism.This work was supported by National Institutes of Health Awards R01GM111672 (to V.M.G.), R01 DK110195 (to B.-E.K.), and DK 44464 (to J.D.G.); Welch Foundation Grant A-1810 (to V.M.G.); and Canadian Institutes of Health Research Operating Grant MOP 133562 (to S.C.L.)

    Zebrafish Mutants calamity and catastrophe Define Critical Pathways of Gene–Nutrient Interactions in Developmental Copper Metabolism

    Get PDF
    Nutrient availability is an important environmental variable during development that has significant effects on the metabolism, health, and viability of an organism. To understand these interactions for the nutrient copper, we used a chemical genetic screen for zebrafish mutants sensitive to developmental copper deficiency. In this screen, we isolated two mutants that define subtleties of copper metabolism. The first contains a viable hypomorphic allele of atp7a and results in a loss of pigmentation when exposed to mild nutritional copper deficiency. This mutant displays incompletely penetrant skeletal defects affected by developmental copper availability. The second carries an inactivating mutation in the vacuolar ATPase that causes punctate melanocytes and embryonic lethality. This mutant, catastrophe, is sensitive to copper deprivation revealing overlap between ion metabolic pathways. Together, the two mutants illustrate the utility of chemical genetic screens in zebrafish to elucidate the interaction of nutrient availability and genetic polymorphisms in cellular metabolism

    A20 (Tnfaip3) Deficiency in Myeloid Cells Protects against Influenza A Virus Infection

    Get PDF
    The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV) produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-ΞΊB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections
    • …
    corecore