172 research outputs found

    Orbital character effects in the photon energy and polarization dependence of pure C60 photoemission

    Get PDF
    Recent direct experimental observation of multiple highly-dispersive C60_{60} valence bands has allowed for a detailed analysis of the unique photoemission traits of these features through photon energy- and polarization-dependent measurements. Previously obscured dispersions and strong photoemission traits are now revealed by specific light polarizations. The observed intensity effects prove the locking in place of the C60_{60} molecules at low temperatures and the existence of an orientational order imposed by the substrate chosen. Most importantly, photon energy- and polarization-dependent effects are shown to be intimately linked with the orbital character of the C60_{60} band manifolds which allows for a more precise determination of the orbital character within the HOMO-2. Our observations and analysis provide important considerations for the connection between molecular and crystalline C60_{60} electronic structure, past and future band structure studies, and for increasingly popular C60_{60} electronic device applications, especially those making use of heterostructures

    Temperature-Dependent Electron-Electron Interaction in Graphene on SrTiO3

    Get PDF
    The electron band structure of graphene on SrTiO3 substrate has been investigated as a function of temperature. The high-resolution angle-resolved photoemission study reveals that the spectral width at Fermi energy and the Fermi velocity of graphene on SrTiO3 are comparable to those of graphene on a BN substrate. Near the charge neutrality, the energy-momentum dispersion of graphene exhibits a strong deviation from the well-known linearity, which is magnified as temperature decreases. Such modification resembles the characteristics of enhanced electron-electron interaction. Our results not only suggest that SrTiO3 can be a plausible candidate as a substrate material for applications in graphene-based electronics, but also provide a possible route towards the realization of a new type of strongly correlated electron phases in the prototypical two-dimensional system via the manipulation of temperature and a proper choice of dielectric substrates.Comment: 16 pages, 3 figure

    Evidence for quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy

    Full text link
    We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature Tc = 335 K by angle-resolved photoemission spectroscopy (ARPES). An anisotropic charge density wave gap with a maximum value of 190 meV is observed in the quasi-one-dimensional band formed by Te px orbitals. The CDW gap can be filled by increasing temperature or electron doping through in situ potassium deposition. Combining the experimental results with calculated electron scattering susceptibility and phonon dispersion, we suggest that both Fermi surface nesting and electron-phonon coupling play important roles in the emergence of the CDW

    Observation of a flat and extended surface state in a topological semimetal

    Full text link
    A topological flatband, also known as drumhead states, is an ideal platform to drive new exotic topological quantum phases. Using angle-resolved photoemission spectroscopy experiments, we reveal the emergence of a highly localized possible drumhead surface state in a topological semimetal BaAl4 and provide its full energy and momentum space topology. We find that the observed surface state is highly localized in momentum, inside a square-shaped bulk Dirac nodal loop, and in energy, leading to a flat band and a peak in the density of state. These results establish this class of materials as a possible experimental realization of drumhead surface states and provide an important reference for future studies of fundamental physics of topological quantum phase transition
    • …
    corecore